Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Please need some help with this one ... thanks a lot

if p is a prime number greater than 2, what is the value of p ? (1) There are a total of 100 prime numbers between 1 and p+1 (2) There are a total of p prime numbers between 1 and 3,912

1: p has to be 100th prime number starting from 2 (1st prime number) sufficient. 2: all the prime numbers between 1 and 3912 can be found and the number of prime number will be what we need. Sufficient. Hence D.

PS: This is a DS question so we do not need to calculate the p till end. calculation will take some time but no need to do.

Please need some help with this one ... thanks a lot

if p is a prime number greater than 2, what is the value of p ? (1) There are a total of 100 prime numbers between 1 and p+1 (2) There are a total of p prime numbers between 1 and 3,912

1: p has to be 100th prime number starting from 2 (1st prime number) sufficient. 2: all the prime numbers between 1 and 3912 can be found and the number of prime number will be what we need. Sufficient. Hence D.

PS: This is a DS question so we do not need to calculate the p till end. calculation will take some time but no need to do.

Using Stmt 1, it's pretty straight forward.

Using Stmt 2, let n = no. of prime numbers between 1 and 3912. How can we be sure that n is a prime number and it is equal to p? Do we have to assume so in questions like these?

D is correct. Both statements are sufficient by itself.

We can find the prime no. using the given information in each statement. But we need not find that number, just need to know the sufficiency !
_________________

"Success is going from failure to failure without a loss of enthusiam." - Winston Churchill

As vs Like - Check this link : http://www.grammar-quizzes.com/like-as.html.

Please need some help with this one ... thanks a lot

if p is a prime number greater than 2, what is the value of p ? (1) There are a total of 100 prime numbers between 1 and p+1 (2) There are a total of p prime numbers between 1 and 3,912

1: p has to be 100th prime number starting from 2 (1st prime number) sufficient. 2: all the prime numbers between 1 and 3912 can be found and the number of prime number will be what we need. Sufficient. Hence D.

PS: This is a DS question so we do not need to calculate the p till end. calculation will take some time but no need to do.

Using Stmt 1, it's pretty straight forward.

Using Stmt 2, let n = no. of prime numbers between 1 and 3912. How can we be sure that n is a prime number and it is equal to p? Do we have to assume so in questions like these?

Stem and the statements are ALWAYS providing us with correct information.

If it turns out that the quantity of primes between 1 and 3912 is not the prime number itself, this will mean that the question is flawed. GMAT wouldn't give us such question then.

Stem says p is a prime number. Statement (2) says that "there are a total of p prime numbers between 1 and 3912". So yes the # of primes between 1 and 3912 MUST be prime number itself. We don't know what number it is, but we can calculate it, hence we can calculate p, hence (2) is also sufficient.

statement A is not sufficient...consider this: how many prime numbers are between 1 and 14 and between 1 and 16,,,same number..you can not conclude anything from statement like there 100 prime less than p+1... B is sufficient..

statement A is not sufficient...consider this: how many prime numbers are between 1 and 14 and between 1 and 16,,,same number..you can not conclude anything from statement like there 100 prime less than p+1... B is sufficient..

OA for this question is D, not B.

Statement (1) is says that there are 100 primes in the range between 1 and P+1, so this statement basically says that P is the 100th prime --> we can determine the single numerical value of P (we can find 100th prime). As this is DS question no matter what the actual value of P is, the fact that we can find it, is already sufficient.
_________________

If p is a prime number greater than 2, what is the value of p ? [#permalink]

Show Tags

14 Jul 2015, 09:22

This isn't an algebra problem. It is number properties and the application of them.

We know p is prime so when statement 1 ultimately says that p is the 100th prime number. Whatever that is, we can find it.

We could count all the prime numbers for statement 2, but there is no need.

D
_________________

Want to Ace the GMAT with 1 button? Start Here: GMAT Answers is an adaptive learning platform that will help you understand exactly what you need to do to get the score that you want.

Re: If p is a prime number greater than 2, what is the value of [#permalink]

Show Tags

19 Jun 2016, 17:53

Incidentally, Bunuel I ran the wolfram to find the number of primes between 1 & 3912. It said 541.

Not to see if 541 is prime or not. We have the closest square root of 541 less than 25 ( considering 625). Thus, we need to check for 2- No 3-No 5-- No 7- No 9-- No ( sum of digits = 10) 11- No 13- No 17- No 19- No 23- No Hence 541 is prime as predicted by you. ( Ohh. by the way, I did countercheck with wolfram again & its correct)

Re: If p is a prime number greater than 2, what is the value of [#permalink]

Show Tags

26 Jan 2017, 06:57

(2) must be sufficient, as there is obviously some fixed number of primes between 1 and 3912. we don't care what that number is, because it's clear that there's only one such number (the number of primes in a fixed range isn't about to change anytime soon).

(1) also sufficient: p is a prime number, so: if p is the 100th prime, then there are 100 primes - viz., the first 100 primes - between 1 and p + 1. if p is the 101th prime or later, then there are 101 or more primes, so that's no good. if p is the 99th prime or earlier, then there are 99 or fewer primes; also no good. therefore, p is the 100th prime.

Re: If p is a prime number greater than 2, what is the value of [#permalink]

Show Tags

30 Jan 2017, 16:48

aljatar wrote:

If p is a prime number greater than 2, what is the value of p ?

(1) There are a total of 100 prime numbers between 1 and p+1 (2) There are a total of p prime numbers between 1 and 3,912

We are given that p is a prime number greater than 2 and we need to determine the value of p.

Note that even though we are asked for the value of p, we actually need to determine whether the value of p is unique. If we can determine from the given statements that p is unique, then the statement(s) will be sufficient. We do not have to actually determine the value of p, even though it would be possible.

Statement One Alone:

There are a total of 100 prime numbers between 1 and p + 1.

If there are exactly 100 prime numbers between 1 and p + 1, then there are exactly 100 prime numbers in the list: 2, 3, 5, 7, 11, 13, …, p. Whatever value p is, p must be unique. It is the 100th number in the list. Statement one alone is sufficient. We can eliminate answer choices B, C, and E.

Statement Two Alone:

There are a total of p prime numbers between 1 and 3,912.

It is a fact that between two distinct positive integers, there must be a unique number of primes. For example, between 1 and 10 inclusive there are exactly 4 primes: 2, 3, 5, 7. There can’t be 3 primes or 5 primes between 1 and 10. Therefore, if there are exactly p prime numbers between 1 and 3,912, p must be unique, even if we don’t know its exact value. Statement two alone is also sufficient.

Answer: D
_________________

Jeffrey Miller Scott Woodbury-Stewart Founder and CEO

Re: If p is a prime number greater than 2, what is the value of [#permalink]

Show Tags

20 Feb 2017, 11:23

I get the explanations to the correct answer D. However, I am confused on what the question is asking. My interpretation of what the question is asking is...It's asking for a prime number that is greater than 2. There fore according to statement 1 and 2, the answer can be 3, 5, 7, 11,and so on, which doesn't make it unique.

From the answer D and your explanations, it seems that the question is asking for how many prime numbers there are, which is unique when given a set. However my interpretation is it is asking for any prime number greater than 2 as long as it is in the set.

gmatclubot

Re: If p is a prime number greater than 2, what is the value of
[#permalink]
20 Feb 2017, 11:23

Campus visits play a crucial role in the MBA application process. It’s one thing to be passionate about one school but another to actually visit the campus, talk...

Its been long time coming. I have always been passionate about poetry. It’s my way of expressing my feelings and emotions. And i feel a person can convey...

Marty Cagan is founding partner of the Silicon Valley Product Group, a consulting firm that helps companies with their product strategy. Prior to that he held product roles at...

Written by Scottish historian Niall Ferguson , the book is subtitled “A Financial History of the World”. There is also a long documentary of the same name that the...