Last visit was: 12 Dec 2024, 04:49 It is currently 12 Dec 2024, 04:49
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 12 Dec 2024
Posts: 97,842
Own Kudos:
685,244
 [9]
Given Kudos: 88,254
Products:
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 97,842
Kudos: 685,244
 [9]
Kudos
Add Kudos
9
Bookmarks
Bookmark this Post
User avatar
broall
User avatar
Retired Moderator
Joined: 10 Oct 2016
Last visit: 07 Apr 2021
Posts: 1,141
Own Kudos:
Given Kudos: 65
Status:Long way to go!
Location: Viet Nam
Posts: 1,141
Kudos: 6,611
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
Mo2men
Joined: 26 Mar 2013
Last visit: 09 May 2023
Posts: 2,453
Own Kudos:
Given Kudos: 641
Concentration: Operations, Strategy
Schools: Erasmus (II)
Products:
Schools: Erasmus (II)
Posts: 2,453
Kudos: 1,408
Kudos
Add Kudos
Bookmarks
Bookmark this Post
avatar
Dsgshanky
Joined: 17 Apr 2017
Last visit: 20 Jan 2021
Posts: 6
Given Kudos: 20
Posts: 6
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
1. x^2 +y^2 <1, this implies x^2 + y^2 lies in [0,1), and x^2 lies in [0,1)
hence, z^2 < 4 - (x^2 +y^2), implies z^2 lies between [0,4)
also, since x^2 is always positive so x^2+z^2 lies between [0+x^2, 4+x^2) thus min is 0, and max is 5, insufficient.

2. y^2 +z^2 <1, this implies, y^2 +z^2 lies in [0,1) also, z^2 lies in [0,1)
given x^2 < 4- (y^2 +z^2), implies x^2 lies in [0,4)

for the same reason as 1, insufficient.

answer E.
User avatar
stonecold
Joined: 12 Aug 2015
Last visit: 09 Apr 2024
Posts: 2,261
Own Kudos:
3,297
 [3]
Given Kudos: 893
GRE 1: Q169 V154
GRE 1: Q169 V154
Posts: 2,261
Kudos: 3,297
 [3]
1
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
Waoooo, Some really really byzantine solutions above.

Let me try to put this in a laconic way => in such questions -> ALWAYS (and I mean ALWAYS) try and use test cases or else the question can be pretty painful.

Statement 1 =>
Test case 1 => 0,0,0 => |x^2+z^2|<1 is true
Test case 2 => 0.9,0,0.9 => |x^2+z^2|<1 is false

Statment 2 =>
Test case 1 => 0,0,0 => |x^2+z^2|<1 is true
Test case 2 => 0.9,0,0.9 => |x^2+z^2|<1 is false



Combining them =>

Test case 1 => 0,0,0 => |x^2+z^2|<1 is true
Test case 2 => 0.9,0,0.9 => |x^2+z^2|<1 is false


Hence E.

Notice how the test case is the same which makes the job 10x times easier :)
User avatar
Madhavi1990
Joined: 15 Jan 2017
Last visit: 15 Jul 2021
Posts: 257
Own Kudos:
Given Kudos: 932
Posts: 257
Kudos: 90
Kudos
Add Kudos
Bookmarks
Bookmark this Post
St 1: |x sq + y sq| <1
|+ve| < 1 --> either it adds to 0; or tend to 0.9 but less than 1

--> but we don't know exact value of x or y

St 2: |y sq + z sq| < 1
|+ve| < 1 --> either it adds to 0; or tend to 0.9 but less than 1
--> but we don't know exact value of x or y

1) + 2) if we take max value |0.49+0.64+0.81|< 4
--> we still don't know the exact values of x,y,z square

so Ans E
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 35,791
Own Kudos:
Posts: 35,791
Kudos: 929
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderator:
Math Expert
97842 posts