Last visit was: 19 Nov 2025, 09:50 It is currently 19 Nov 2025, 09:50
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
udaymathapati
Joined: 06 Apr 2010
Last visit: 27 Jan 2015
Posts: 91
Own Kudos:
5,543
 [34]
Given Kudos: 15
Products:
Posts: 91
Kudos: 5,543
 [34]
5
Kudos
Add Kudos
29
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,389
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,389
Kudos: 778,288
 [16]
6
Kudos
Add Kudos
10
Bookmarks
Bookmark this Post
avatar
GSBae
Joined: 23 May 2013
Last visit: 07 Mar 2025
Posts: 167
Own Kudos:
456
 [5]
Given Kudos: 42
Location: United States
Concentration: Technology, Healthcare
GMAT 1: 760 Q49 V45
GPA: 3.5
GMAT 1: 760 Q49 V45
Posts: 167
Kudos: 456
 [5]
5
Kudos
Add Kudos
Bookmarks
Bookmark this Post
General Discussion
User avatar
amitjash
Joined: 17 Mar 2010
Last visit: 22 Feb 2017
Posts: 87
Own Kudos:
674
 [4]
Given Kudos: 9
Posts: 87
Kudos: 674
 [4]
2
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
When there are squaring or cubing is involved, always remember -ve values as well as the values between -1 and 1
User avatar
Onell
Joined: 05 Jan 2011
Last visit: 12 Feb 2012
Posts: 72
Own Kudos:
Given Kudos: 8
Posts: 72
Kudos: 1,065
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
udaymathapati
If x and y are positive, is \(x^3\) > y?
(1) \sqrt{x} > y
(2) x > y

My approach:
1.\sqrt{x}>y ....>x>\(y^2\)....NS
2. x>y ....NS

Combine...\(y^2\)>x>y....> \(x^3\)>y. This can be verified by taking no like 4>3>2..where y=2 and x=3

Any other apporach.

If x and y are positive, is x^3>y?

NUMBER PLUGGING:

(1) \(\sqrt{x}>y\) --> if \(x=1\) and \(y=\frac{1}{2}\) then the answer will be YES but if \(x=\frac{1}{4}\) and \(y=\frac{1}{5}\) then the answer will be NO. Two different answers, hence not sufficient.

(2) \(x>y\) --> if \(x=1\) and \(y=\frac{1}{2}\) then the answer will be YES but if \(x=\frac{1}{4}\) and \(y=\frac{1}{5}\) then the answer will be NO. Two different answers, hence not sufficient.

(1)+(2) Both examples are valid for combined statements, so we still have two answers. Not sufficient.

Answer: E.

ALGEBRAIC APPROACH:

For \(1\leq{x}\): ------\(\sqrt{x}\)----\(x\)----\(x^3\), so \(1\leq{\sqrt{x}}\leq{x}\leq{x^3}\) (the case \(\sqrt{x}=x=x^3\) is when \(x=1\)). \(y\) is somewhere in green zone (as \(y<\sqrt{x}\) and \(y<x\)), so if we have this case answer is always YES: \(y<x^3\).

But:

For \(0<x<1\): \(0\)----\(x^3\)----\(x\)----\(\sqrt{x}\)----\(1\), so \(0<x^3<x<\sqrt{x}\). \(y\) is somewhere in green or red zone (as \(y<\sqrt{x}\) and \(y<x\)), so if we have this case answer is sometimes YES: \(y<x^3\) (if \(y\) is in green zone), and sometimes NO: \(x^3<y\) (if \(y\) is in red zone). In fact in this case \(y=x^3\) is also possible, for example when \(x=\frac{1}{2}\) and \(y=\frac{1}{8}\)

Answer: E.

Hope it's clear.



+1 for u
Great Post Thanks Bunuel
User avatar
subhashghosh
User avatar
Retired Moderator
Joined: 16 Nov 2010
Last visit: 25 Jun 2024
Posts: 896
Own Kudos:
Given Kudos: 43
Location: United States (IN)
Concentration: Strategy, Technology
Products:
Posts: 896
Kudos: 1,279
Kudos
Add Kudos
Bookmarks
Bookmark this Post
x = 1/4, y = 1/8

From (1)

1/2 > 1/8, but 1/8 = 1/8

but (9)^3 > 2

and sqrt(9) > 2

In (2) also, the same is true.

Answer - E.
avatar
ShajibAhmed
Joined: 06 Nov 2013
Last visit: 30 May 2014
Posts: 1
Given Kudos: 1
Posts: 1
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
udaymathapati
If x and y are positive, is \(x^3\) > y?
(1) \sqrt{x} > y
(2) x > y

My approach:
1.\sqrt{x}>y ....>x>\(y^2\)....NS
2. x>y ....NS

Combine...\(y^2\)>x>y....> \(x^3\)>y. This can be verified by taking no like 4>3>2..where y=2 and x=3

Any other apporach.

If x and y are positive, is x^3>y?

NUMBER PLUGGING:

(1) \(\sqrt{x}>y\) --> if \(x=1\) and \(y=\frac{1}{2}\) then the answer will be YES but if \(x=\frac{1}{4}\) and \(y=\frac{1}{5}\) then the answer will be NO. Two different answers, hence not sufficient.

(2) \(x>y\) --> if \(x=1\) and \(y=\frac{1}{2}\) then the answer will be YES but if \(x=\frac{1}{4}\) and \(y=\frac{1}{5}\) then the answer will be NO. Two different answers, hence not sufficient.

(1)+(2) Both examples are valid for combined statements, so we still have two answers. Not sufficient.

Answer: E.

ALGEBRAIC APPROACH:

For \(1\leq{x}\): ------\(\sqrt{x}\)----\(x\)----\(x^3\), so \(1\leq{\sqrt{x}}\leq{x}\leq{x^3}\) (the case \(\sqrt{x}=x=x^3\) is when \(x=1\)). \(y\) is somewhere in green zone (as \(y<\sqrt{x}\) and \(y<x\)), so if we have this case answer is always YES: \(y<x^3\).

But:

For \(0<x<1\): \(0\)----\(x^3\)----\(x\)----\(\sqrt{x}\)----\(1\), so \(0<x^3<x<\sqrt{x}\). \(y\) is somewhere in green or red zone (as \(y<\sqrt{x}\) and \(y<x\)), so if we have this case answer is sometimes YES: \(y<x^3\) (if \(y\) is in green zone), and sometimes NO: \(x^3<y\) (if \(y\) is in red zone). In fact in this case \(y=x^3\) is also possible, for example when \(x=\frac{1}{2}\) and \(y=\frac{1}{8}\)

Answer: E.

Hope it's clear.


What if the question says x and y are positive INTEGERS ??
avatar
GSBae
Joined: 23 May 2013
Last visit: 07 Mar 2025
Posts: 167
Own Kudos:
Given Kudos: 42
Location: United States
Concentration: Technology, Healthcare
GMAT 1: 760 Q49 V45
GPA: 3.5
GMAT 1: 760 Q49 V45
Posts: 167
Kudos: 456
Kudos
Add Kudos
Bookmarks
Bookmark this Post
ShajibAhmed


What if the question says x and y are positive INTEGERS ??

If they were both integers, then the answer would be D: either of them are sufficient, since we'd know that\(x^2y \geq 1\) and \(x^2 \geq 1\)(see my solution above). The question doesn't state that, however, so we must consider all cases.
User avatar
BillyZ
User avatar
Current Student
Joined: 14 Nov 2016
Last visit: 03 May 2025
Posts: 1,143
Own Kudos:
22,217
 [1]
Given Kudos: 926
Location: Malaysia
Concentration: General Management, Strategy
GMAT 1: 750 Q51 V40 (Online)
GPA: 3.53
Products:
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
udaymathapati
If x and y are positive, is \(x^3\) > y?
(1) \sqrt{x} > y
(2) x > y

My approach:
1.\sqrt{x}>y ....>x>\(y^2\)....NS
2. x>y ....NS

Combine...\(y^2\)>x>y....> \(x^3\)>y. This can be verified by taking no like 4>3>2..where y=2 and x=3

Any other apporach.

If x and y are positive, is x^3>y?

NUMBER PLUGGING:

(1) \(\sqrt{x}>y\) --> if \(x=1\) and \(y=\frac{1}{2}\) then the answer will be YES but if \(x=\frac{1}{4}\) and \(y=\frac{1}{5}\) then the answer will be NO. Two different answers, hence not sufficient.

(2) \(x>y\) --> if \(x=1\) and \(y=\frac{1}{2}\) then the answer will be YES but if \(x=\frac{1}{4}\) and \(y=\frac{1}{5}\) then the answer will be NO. Two different answers, hence not sufficient.

(1)+(2) Both examples are valid for combined statements, so we still have two answers. Not sufficient.

Answer: E.

ALGEBRAIC APPROACH:

For \(1\leq{x}\): ------\(\sqrt{x}\)----\(x\)----\(x^3\), so \(1\leq{\sqrt{x}}\leq{x}\leq{x^3}\) (the case \(\sqrt{x}=x=x^3\) is when \(x=1\)). \(y\) is somewhere in green zone (as \(y<\sqrt{x}\) and \(y<x\)), so if we have this case answer is always YES: \(y<x^3\).

But:

For \(0<x<1\): \(0\)----\(x^3\)----\(x\)----\(\sqrt{x}\)----\(1\), so \(0<x^3<x<\sqrt{x}\). \(y\) is somewhere in green or red zone (as \(y<\sqrt{x}\) and \(y<x\)), so if we have this case answer is sometimes YES: \(y<x^3\) (if \(y\) is in green zone), and sometimes NO: \(x^3<y\) (if \(y\) is in red zone). In fact in this case \(y=x^3\) is also possible, for example when \(x=\frac{1}{2}\) and \(y=\frac{1}{8}\)

Answer: E.

Hope it's clear.

You will get a better understanding by drawing the number line and plugging in the value.
Attachments

Untitled.png
Untitled.png [ 5.87 KiB | Viewed 11437 times ]

User avatar
Basshead
Joined: 09 Jan 2020
Last visit: 07 Feb 2024
Posts: 925
Own Kudos:
Given Kudos: 432
Location: United States
Posts: 925
Kudos: 302
Kudos
Add Kudos
Bookmarks
Bookmark this Post
The key is to remember that if 0 < x < 1, x gets smaller when squared or cubed.

So if we're told \(x > y^2\) (as in statement 1), we can't say with certainty that \(x^3 > y\).

Similarly, if we can't say with certainty that \(x > y^2\), then we can't conclude \(x > y\) either.
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,587
Own Kudos:
Posts: 38,587
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
105389 posts
496 posts