It is currently 20 Nov 2017, 10:49

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If x is a positive integer less than 100 such that x is

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Expert Post
1 KUDOS received
e-GMAT Representative
User avatar
S
Joined: 04 Jan 2015
Posts: 746

Kudos [?]: 2164 [1], given: 123

If x is a positive integer less than 100 such that x is [#permalink]

Show Tags

New post 26 May 2017, 05:50
1
This post received
KUDOS
Expert's post
10
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

20% (02:54) correct 80% (02:29) wrong based on 289 sessions

HideShow timer Statistics

Q.

If x is a positive integer less than 100 such that x is divisible by \(2^y\), where y is a positive integer, what is the value of y?

    (1) \(x^2 > 3600\)

    (2) \(\frac{x^2}{2^{y+2}}\) is an odd integer


Answer Choices



    A. Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient to answer the question asked.
    B. Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient to answer the question asked.
    C. BOTH statements (1) and (2) TOGETHER are sufficient to answer the question asked, but NEITHER statement ALONE is sufficient to answer the question asked.
    D. EACH statement ALONE is sufficient to answer the question asked.
    E. Statements (1) and (2) TOGETHER are NOT sufficient to answer the question asked, and additional data specific to the problem are needed.

Thanks,
Saquib
Quant Expert
e-GMAT

Register for our Free Session on Number Properties (held every 3rd week) to solve exciting 700+ Level Questions in a classroom environment under the real-time guidance of our Experts :)

Image
[Reveal] Spoiler: OA

_________________












| '4 out of Top 5' Instructors on gmatclub | 70 point improvement guarantee | www.e-gmat.com

Kudos [?]: 2164 [1], given: 123

Expert Post
e-GMAT Representative
User avatar
S
Joined: 04 Jan 2015
Posts: 746

Kudos [?]: 2164 [0], given: 123

Re: If x is a positive integer less than 100 such that x is [#permalink]

Show Tags

New post 26 May 2017, 05:50
Reserving this space to post the official solution. :)
_________________












| '4 out of Top 5' Instructors on gmatclub | 70 point improvement guarantee | www.e-gmat.com

Kudos [?]: 2164 [0], given: 123

Director
Director
User avatar
P
Joined: 05 Mar 2015
Posts: 963

Kudos [?]: 291 [0], given: 41

If x is a positive integer less than 100 such that x is [#permalink]

Show Tags

New post 26 May 2017, 07:49
1
This post was
BOOKMARKED
EgmatQuantExpert wrote:
Q.

If x is a positive integer less than 100 such that x is divisible by \(2^y\), where y is a positive integer, what is the value of y?

    (1) \(x^2 > 3600\)

    (2) \(\frac{x^2}{2^{y+2}}\) is an odd integer


Answer Choices



    A. Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient to answer the question asked.
    B. Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient to answer the question asked.
    C. BOTH statements (1) and (2) TOGETHER are sufficient to answer the question asked, but NEITHER statement ALONE is sufficient to answer the question asked.
    D. EACH statement ALONE is sufficient to answer the question asked.
    E. Statements (1) and (2) TOGETHER are NOT sufficient to answer the question asked, and additional data specific to the problem are needed.

Thanks,
Saquib
Quant Expert
e-GMAT

Register for our Free Session on Number Properties (held every 3rd week) to solve exciting 700+ Level Questions in a classroom environment under the real-time guidance of our Experts :)

Image



(1) since x >0
x>60
or 60<x<100
only x= 64 satisfies x is div. by 2^y
64= 2^6 thus y =6
88= 11*2^3 thus y=3

insuff..

(2) x can be 88 then y=2
or x=64 then y =10
insuff


combining as above ex. in (2)
Ans E

Last edited by rohit8865 on 26 May 2017, 08:37, edited 2 times in total.

Kudos [?]: 291 [0], given: 41

7 KUDOS received
Senior CR Moderator
User avatar
D
Status: Long way to go!
Joined: 10 Oct 2016
Posts: 1244

Kudos [?]: 1008 [7], given: 60

Location: Viet Nam
GMAT ToolKit User Premium Member CAT Tests
Re: If x is a positive integer less than 100 such that x is [#permalink]

Show Tags

New post 26 May 2017, 08:18
7
This post received
KUDOS
4
This post was
BOOKMARKED
EgmatQuantExpert wrote:
If x is a positive integer less than 100 such that x is divisible by \(2^y\), where y is a positive integer, what is the value of y?

    (1) \(x^2 > 3600\)

    (2) \(\frac{x^2}{2^{y+2}}\) is an odd integer


We have \(0<x<100\) and \(x=k\times 2^y\)

(1) \(x^2 > 3600 = 60^2 \implies x>60\)

If \(k=1 \implies x=2^y \implies 60 < 2^y < 100\)

Note that \(2^5=32\), \(2^6=64\), \(2^7=128\). Hence we have \(y=6\).

If \(k=2 \implies x=2^{y+1} \implies 60 < 2^{y+1} < 100 \implies y=5\).

Hence insufficient.

(2) \(\frac{x^2}{2^{y+2}}=\frac{k^2 \times 2^{2y}}{2^{y+2}}=k^2 \times 2^{y-2}\) is odd

Hence we must have \(y-2=0 \implies y=2\). Sufficient.

The answer is B
_________________

Actual LSAT CR bank by Broall

How to solve quadratic equations - Factor quadratic equations
Factor table with sign: The useful tool to solve polynomial inequalities
Applying AM-GM inequality into finding extreme/absolute value

New Error Log with Timer

Kudos [?]: 1008 [7], given: 60

Director
Director
avatar
S
Joined: 21 Mar 2016
Posts: 536

Kudos [?]: 5 [0], given: 97

Reviews Badge CAT Tests
Re: If x is a positive integer less than 100 such that x is [#permalink]

Show Tags

New post 03 Jun 2017, 01:09
shud be E..
let me try,,

stat1 : says x>60 and stem says x is less than 10.,, numerous possibilities for y
consider x= 64 or x = 96 gives diff values of y

stat2: stem says x is less than 100

same examples above apply...

hence not suff

ans E
cheers

Kudos [?]: 5 [0], given: 97

Manager
Manager
avatar
S
Joined: 27 Aug 2016
Posts: 95

Kudos [?]: 4 [0], given: 149

Location: India
Schools: HEC Montreal '21
GMAT 1: 670 Q47 V37
GPA: 3
WE: Engineering (Energy and Utilities)
GMAT ToolKit User
Re: If x is a positive integer less than 100 such that x is [#permalink]

Show Tags

New post 13 Jun 2017, 01:51
rohit8865 wrote:
EgmatQuantExpert wrote:
Q.

If x is a positive integer less than 100 such that x is divisible by \(2^y\), where y is a positive integer, what is the value of y?

    (1) \(x^2 > 3600\)

    (2) \(\frac{x^2}{2^{y+2}}\) is an odd integer


Answer Choices



    A. Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient to answer the question asked.
    B. Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient to answer the question asked.
    C. BOTH statements (1) and (2) TOGETHER are sufficient to answer the question asked, but NEITHER statement ALONE is sufficient to answer the question asked.
    D. EACH statement ALONE is sufficient to answer the question asked.
    E. Statements (1) and (2) TOGETHER are NOT sufficient to answer the question asked, and additional data specific to the problem are needed.

Thanks,
Saquib
Quant Expert
e-GMAT

Register for our Free Session on Number Properties (held every 3rd week) to solve exciting 700+ Level Questions in a classroom environment under the real-time guidance of our Experts :)

Image



(1) since x >0
x>60
or 60<x<100
only x= 64 satisfies x is div. by 2^y
64= 2^6 thus y =6
88= 11*2^3 thus y=3

insuff..

(2) x can be 88 then y=2
or x=64 then y =10
insuff


combining as above ex. in (2)
Ans E


HI,
Your explanation is well understood, but I have a simple query, are we not supposed to understand from the question stem that x is a multiple of 2^y??
Thanx

Kudos [?]: 4 [0], given: 149

Intern
Intern
avatar
B
Joined: 30 May 2017
Posts: 46

Kudos [?]: 18 [0], given: 37

Concentration: Finance, General Management
GMAT 1: 690 Q47 V38
GPA: 3.25
Re: If x is a positive integer less than 100 such that x is [#permalink]

Show Tags

New post 03 Jul 2017, 14:15
nguyendinhtuong wrote:
EgmatQuantExpert wrote:
If x is a positive integer less than 100 such that x is divisible by \(2^y\), where y is a positive integer, what is the value of y?

    (1) \(x^2 > 3600\)

    (2) \(\frac{x^2}{2^{y+2}}\) is an odd integer


We have \(0<x<100\) and \(x=k\times 2^y\)

(1) \(x^2 > 3600 = 60^2 \implies x>60\)

If \(k=1 \implies x=2^y \implies 60 < 2^y < 100\)

Note that \(2^5=32\), \(2^6=64\), \(2^7=128\). Hence we have \(y=6\).

If \(k=2 \implies x=2^{y+1} \implies 60 < 2^{y+1} < 100 \implies y=5\).

Hence insufficient.

(2) \(\frac{x^2}{2^{y+2}}=\frac{k^2 \times 2^{2y}}{2^{y+2}}=k^2 \times 2^{y-2}\) is odd

Hence we must have \(y-2=0 \implies y=2\). Sufficient.

The answer is B


Not sure where "k" comes from and why you went this route?
_________________

Veritas Prep 6/18/17 600 Q:38 V:35 IR:5
Veritas Prep 6/29/17 620 Q:43 V:33 IR:4
Manhattan 7/12/17 640 Q:42 V:35 IR:2.4
Veritas Prep 7/27/17 640 Q:41 V:37 IR:4
Manhattan 8/9/17 670 Q:44 V:37 IR:3
Veritas Prep 8/21/17 660 Q:45 V:36 IR:7
GMAT Prep 8/23/17 700 Q:47 V:38 IR:8
GMAT Prep 8/27/17 730 Q:49 V:40 IR:8
Veritas Prep 8/30/17 690 Q:47 V:37 IR:8

Kudos [?]: 18 [0], given: 37

Senior CR Moderator
User avatar
D
Status: Long way to go!
Joined: 10 Oct 2016
Posts: 1244

Kudos [?]: 1008 [0], given: 60

Location: Viet Nam
GMAT ToolKit User Premium Member CAT Tests
Re: If x is a positive integer less than 100 such that x is [#permalink]

Show Tags

New post 03 Jul 2017, 17:53
Smokeybear00 wrote:
nguyendinhtuong wrote:
EgmatQuantExpert wrote:
If x is a positive integer less than 100 such that x is divisible by \(2^y\), where y is a positive integer, what is the value of y?

    (1) \(x^2 > 3600\)

    (2) \(\frac{x^2}{2^{y+2}}\) is an odd integer


We have \(0<x<100\) and \(x=k\times 2^y\)

(1) \(x^2 > 3600 = 60^2 \implies x>60\)

If \(k=1 \implies x=2^y \implies 60 < 2^y < 100\)

Note that \(2^5=32\), \(2^6=64\), \(2^7=128\). Hence we have \(y=6\).

If \(k=2 \implies x=2^{y+1} \implies 60 < 2^{y+1} < 100 \implies y=5\).

Hence insufficient.

(2) \(\frac{x^2}{2^{y+2}}=\frac{k^2 \times 2^{2y}}{2^{y+2}}=k^2 \times 2^{y-2}\) is odd

Hence we must have \(y-2=0 \implies y=2\). Sufficient.

The answer is B


Not sure where "k" comes from and why you went this route?


Because the question said that \(x\) is divisible by \(2^y\), then there must be an integer \(k\) that \(x=k * 2^y\)
_________________

Actual LSAT CR bank by Broall

How to solve quadratic equations - Factor quadratic equations
Factor table with sign: The useful tool to solve polynomial inequalities
Applying AM-GM inequality into finding extreme/absolute value

New Error Log with Timer

Kudos [?]: 1008 [0], given: 60

Intern
Intern
avatar
S
Joined: 30 Dec 2013
Posts: 11

Kudos [?]: 6 [0], given: 580

Location: India
GPA: 2.93
Re: If x is a positive integer less than 100 such that x is [#permalink]

Show Tags

New post 06 Aug 2017, 22:42
I am not sure how B is the answer.
consider two examples
when x=68,
\frac{x^2}{2^{y+2}},
\frac{68^2}{2^{y+2}},
\frac{17*17*4*4}{2^{y+2}},
in this case to make the above value odd, y will be 2.
And when x=80
\frac{x^2}{2^{y+2}}
\frac{80^2}{2^{y+2}}
\frac{5*5*2^4*2^4}{2^{y+2}}
in this case to make the above value odd, y will be 6.
there are multiple value for y.
Experts please help.

Kudos [?]: 6 [0], given: 580

Manager
Manager
avatar
B
Joined: 07 Jun 2017
Posts: 111

Kudos [?]: 3 [0], given: 454

Re: If x is a positive integer less than 100 such that x is [#permalink]

Show Tags

New post 08 Aug 2017, 02:38
broall wrote:
EgmatQuantExpert wrote:
If x is a positive integer less than 100 such that x is divisible by \(2^y\), where y is a positive integer, what is the value of y?

    (1) \(x^2 > 3600\)

    (2) \(\frac{x^2}{2^{y+2}}\) is an odd integer


We have \(0<x<100\) and \(x=k\times 2^y\)

(1) \(x^2 > 3600 = 60^2 \implies x>60\)

If \(k=1 \implies x=2^y \implies 60 < 2^y < 100\)

Note that \(2^5=32\), \(2^6=64\), \(2^7=128\). Hence we have \(y=6\).

If \(k=2 \implies x=2^{y+1} \implies 60 < 2^{y+1} < 100 \implies y=5\).

Hence insufficient.

(2) \(\frac{x^2}{2^{y+2}}=\frac{k^2 \times 2^{2y}}{2^{y+2}}=k^2 \times 2^{y-2}\) is odd

Hence we must have \(y-2=0 \implies y=2\). Sufficient.

The answer is B


I am sorry but I get frustrated when I don't understand
Why first statement is not sufficient?
60<x<100
How would x be 32?
then y only could be 6

thank you so much

Kudos [?]: 3 [0], given: 454

Manager
Manager
avatar
B
Joined: 27 Jun 2015
Posts: 50

Kudos [?]: 9 [0], given: 48

WE: Information Technology (Computer Software)
GMAT ToolKit User
Re: If x is a positive integer less than 100 such that x is [#permalink]

Show Tags

New post 02 Nov 2017, 19:48
broall wrote:
EgmatQuantExpert wrote:
If x is a positive integer less than 100 such that x is divisible by \(2^y\), where y is a positive integer, what is the value of y?

    (1) \(x^2 > 3600\)

    (2) \(\frac{x^2}{2^{y+2}}\) is an odd integer


We have \(0<x<100\) and \(x=k\times 2^y\)

(1) \(x^2 > 3600 = 60^2 \implies x>60\)

If \(k=1 \implies x=2^y \implies 60 < 2^y < 100\)

Note that \(2^5=32\), \(2^6=64\), \(2^7=128\). Hence we have \(y=6\).

If \(k=2 \implies x=2^{y+1} \implies 60 < 2^{y+1} < 100 \implies y=5\).

Hence insufficient.

(2) \(\frac{x^2}{2^{y+2}}=\frac{k^2 \times 2^{2y}}{2^{y+2}}=k^2 \times 2^{y-2}\) is odd

Hence we must have \(y-2=0 \implies y=2\). Sufficient.

The answer is B



I did almost the same but not sure what is the loophole in my method.
For stat 2, (k^2* 2^2y)/(2^y*2^2) = odd
=> k^2* 2^2y / (2^y * 4)= odd
now we multiply both sides by 4. When 4 multiplied with odd number it gives even number.
so the equation becomes:
k^2* 2^2y/2^y = even
k^2 * 2^y = even
here y can take any value and the product remains even.

Can you please tell me where I am going wrong?
Attachments

IMG_2862.jpg
IMG_2862.jpg [ 862.47 KiB | Viewed 353 times ]

Kudos [?]: 9 [0], given: 48

1 KUDOS received
Manager
Manager
avatar
B
Joined: 02 Apr 2014
Posts: 199

Kudos [?]: 10 [1], given: 92

Re: If x is a positive integer less than 100 such that x is [#permalink]

Show Tags

New post 06 Nov 2017, 13:42
1
This post received
KUDOS
Statement 1: Clearly insufficient

Statement 2:
Let \(x = 2^m\)

so (x^2) / (2^(y+2)) = odd => 2 ^ 2m / ( 2 ^(y+2)) = odd

for above to be odd, 2 ^ 2m = ( 2 ^(y+2)) => 2m = y + 2 => m = (y/2) + 1
also, note that y <= m (since x is divisible by 2^y), substituting for m => y <= (y+2) + 1 => y <= 2,

So y can be 1 or 2
for m = (y/2) + 1;

if y = 1, m = 1.5, but this is not possible, as m is integer
if y = 2, m = 2, so we have found the value of y

Sufficient.

Answer (B)

Kudos [?]: 10 [1], given: 92

Re: If x is a positive integer less than 100 such that x is   [#permalink] 06 Nov 2017, 13:42
Display posts from previous: Sort by

If x is a positive integer less than 100 such that x is

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.