GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 09 Dec 2018, 13:45

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Events & Promotions in December
PrevNext
SuMoTuWeThFrSa
2526272829301
2345678
9101112131415
16171819202122
23242526272829
303112345
Open Detailed Calendar
  • Free GMAT Algebra Webinar

     December 09, 2018

     December 09, 2018

     07:00 AM PST

     09:00 AM PST

    Attend this Free Algebra Webinar and learn how to master Inequalities and Absolute Value problems on GMAT.
  • Free lesson on number properties

     December 10, 2018

     December 10, 2018

     10:00 PM PST

     11:00 PM PST

    Practice the one most important Quant section - Integer properties, and rapidly improve your skills.

In a box of 12 pens, a total of 3 are defective. If a customer buys 2

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 51035
In a box of 12 pens, a total of 3 are defective. If a customer buys 2  [#permalink]

Show Tags

New post 20 Oct 2015, 02:18
8
29
00:00
A
B
C
D
E

Difficulty:

  15% (low)

Question Stats:

77% (01:27) correct 23% (01:27) wrong based on 1188 sessions

HideShow timer Statistics

In a box of 12 pens, a total of 3 are defective. If a customer buys 2 pens selected at random from the box, what is the probability that neither pen will be defective?

A. 1/6
B. 2/9
C. 6/11
D. 9/16
E. 3/4


Kudos for a correct solution.

_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Most Helpful Expert Reply
CEO
CEO
User avatar
P
Status: GMATINSIGHT Tutor
Joined: 08 Jul 2010
Posts: 2709
Location: India
GMAT: INSIGHT
WE: Education (Education)
Reviews Badge
In a box of 12 pens, a total of 3 are defective. If a customer buys 2  [#permalink]

Show Tags

New post 20 Oct 2015, 03:27
13
5
Bunuel wrote:
In a box of 12 pens, a total of 3 are defective. If a customer buys 2 pens selected at random from the box, what is the probability that neither pen will be defective?

A. 1/6
B. 2/9
C. 6/11
D. 9/16
E. 3/4


Kudos for a correct solution.


Method- 1
There are 9 fine pieces of pen and 3 defective in a lot of 12 pens

i.e. Probability of first pen NOT being defective = (9/12)
i.e. Probability of Second pen NOT being defective = (8/11) [11 pen remaining with 8 defective remaining considering that first was defective]

Probability of Both pen being NON-defective = (9/12)*(8/11) = 6/11

Answer: option C

Method- 2
There are 9 fine pieces of pen and 3 defective in a lot of 12 pens

No. of ways of choosing 2 NON defective out of 9 fine pieces of pen = 9C2
No. of ways of choosing 2 out of 12 pieces of pen = 12C2

Required probability that none of the chosen is defective = 9C2 / 12C2 = 36 / 66 = 6/11

Answer: option C
_________________

Prosper!!!
GMATinsight
Bhoopendra Singh and Dr.Sushma Jha
e-mail: info@GMATinsight.com I Call us : +91-9999687183 / 9891333772
Online One-on-One Skype based classes and Classroom Coaching in South and West Delhi
http://www.GMATinsight.com/testimonials.html

ACCESS FREE GMAT TESTS HERE:22 ONLINE FREE (FULL LENGTH) GMAT CAT (PRACTICE TESTS) LINK COLLECTION

Most Helpful Community Reply
VP
VP
User avatar
V
Status: It's near - I can see.
Joined: 13 Apr 2013
Posts: 1339
Location: India
Concentration: International Business, Operations
GMAT 1: 480 Q38 V22
GPA: 3.01
WE: Engineering (Consulting)
Premium Member Reviews Badge CAT Tests
Re: In a box of 12 pens, a total of 3 are defective. If a customer buys 2  [#permalink]

Show Tags

New post 20 Oct 2015, 03:03
3
3
Bunuel wrote:
In a box of 12 pens, a total of 3 are defective. If a customer buys 2 pens selected at random from the box, what is the probability that neither pen will be defective?

A. 1/6
B. 2/9
C. 6/11
D. 9/16
E. 3/4


Kudos for a correct solution.



My Solution:

Total Pens = 12 Nos

Defective pens = 3

Remaining = 9, Therefore, selecting 2 no defective pens from 9 = 9C2 ways, and selecting 2 pens from 12 = 12C2 ways

Probability of neither pen will be defective = 9C2/12C2 = 36/66 = 6/11 Answer is C

_________________

"Do not watch clock; Do what it does. KEEP GOING."

General Discussion
Verbal Forum Moderator
User avatar
V
Status: Greatness begins beyond your comfort zone
Joined: 08 Dec 2013
Posts: 2128
Location: India
Concentration: General Management, Strategy
Schools: Kelley '20, ISB '19
GPA: 3.2
WE: Information Technology (Consulting)
GMAT ToolKit User Reviews Badge CAT Tests
Re: In a box of 12 pens, a total of 3 are defective. If a customer buys 2  [#permalink]

Show Tags

New post 20 Oct 2015, 03:32
Total number of pens = 12
Defective pens = 3
Non- defective pens= 9

Probablity of selecting 2 non defective pens = 9C2/ 12C2 = 6/11
Answer C

Alternatively , we can use probablity = No of favorable outcomes / No of total outcomes
= 9/12 * 8/11 = 6/11
_________________

When everything seems to be going against you, remember that the airplane takes off against the wind, not with it. - Henry Ford
The Moment You Think About Giving Up, Think Of The Reason Why You Held On So Long
+1 Kudos if you find this post helpful

Director
Director
User avatar
B
Joined: 10 Mar 2013
Posts: 504
Location: Germany
Concentration: Finance, Entrepreneurship
GMAT 1: 580 Q46 V24
GPA: 3.88
WE: Information Technology (Consulting)
GMAT ToolKit User
Re: In a box of 12 pens, a total of 3 are defective. If a customer buys 2  [#permalink]

Show Tags

New post 20 Oct 2015, 03:41
Bunuel wrote:
In a box of 12 pens, a total of 3 are defective. If a customer buys 2 pens selected at random from the box, what is the probability that neither pen will be defective?

A. 1/6
B. 2/9
C. 6/11
D. 9/16
E. 3/4


Kudos for a correct solution.


as already stated, we can solve it with oposite probalbility:
9/12*8/11=6/11
_________________

When you’re up, your friends know who you are. When you’re down, you know who your friends are.

Share some Kudos, if my posts help you. Thank you !

800Score ONLY QUANT CAT1 51, CAT2 50, CAT3 50
GMAT PREP 670
MGMAT CAT 630
KAPLAN CAT 660

Retired Moderator
avatar
Joined: 29 Apr 2015
Posts: 844
Location: Switzerland
Concentration: Economics, Finance
Schools: LBS MIF '19
WE: Asset Management (Investment Banking)
GMAT ToolKit User Premium Member
Re: In a box of 12 pens, a total of 3 are defective. If a customer buys 2  [#permalink]

Show Tags

New post 20 Oct 2015, 08:59
Bunuel wrote:
In a box of 12 pens, a total of 3 are defective. If a customer buys 2 pens selected at random from the box, what is the probability that neither pen will be defective?

A. 1/6
B. 2/9
C. 6/11
D. 9/16
E. 3/4


Kudos for a correct solution.


If 3 pens are defective, 9 are good. Selecting 2 good pens and no defective one:

Probability = \(\frac{9}{12}\) * \(\frac{8}{11}\) = \(\frac{6}{11}\)

Answer C.
_________________

Saving was yesterday, heat up the gmatclub.forum's sentiment by spending KUDOS!

PS Please send me PM if I do not respond to your question within 24 hours.

Manager
Manager
avatar
Joined: 03 Jan 2015
Posts: 79
GMAT ToolKit User
Re: In a box of 12 pens, a total of 3 are defective. If a customer buys 2  [#permalink]

Show Tags

New post 21 Feb 2016, 10:38
If 3 out of the 12 pens are defective, 9 out of the 12 pens are not defective.

If a customer first select 1 pen at random from a box, the probability that this pen is not defective is \(\frac{9}{12}.\) If the customer then selects, at random, the second pen from the box, the probability that this pen is not defective is \(\frac{8}{11}\). Note that the customer already took 1 pen out of the box without replacement, hence, there are only 11 pens left in the box instead of 12 and the probability of selecting a pen that is not defective is 8 out of 11 and NOT 9 out of 12. (I fell for this mistake)

Therefore, the probability of taking 2 pens at random from the box that are not defective is: \(\frac{9}{12} * \frac{8}{11}= \frac{18}{33} = \frac{6}{11}.\)
Answer C.
Current Student
avatar
B
Joined: 31 Jan 2016
Posts: 21
Schools: Rotman '19 (A)
Re: In a box of 12 pens, a total of 3 are defective. If a customer buys 2  [#permalink]

Show Tags

New post 17 Aug 2016, 17:51
1
In case anyone is having trouble seeing the alternative solution (although longer, may help conceptualize how probabilities work) here it goes:

12 Pens - 3 Defective - 2 Selected - P (neither defective)

Find all probabilities of defective pens:
P (both defective) + P (1 defective, 1 not defective) + P (1 not defective, 1 defective)

P (both defective) = 3/12 * 2/11 = 1/4 * 2/11 = 2/44
P (1 defective, 1 not defective) = 3/12 * 9/11 = 1/4 * 9/11 = 9/44
P (1 not defective, 1 defective) = 9/12 * 3/11 = 3/4 * 3/11 = 9/44

P (of all possible cases where one may obtain a defective pen) = 2/44 + 9/44 + 9/44 = 20/44 = 5/11
P (of neither defective) = 1 - P (of all cases of defective) = 1 - 5/11 = 11/11 - 5/11 = 6/11
Senior SC Moderator
User avatar
V
Joined: 14 Nov 2016
Posts: 1323
Location: Malaysia
GMAT ToolKit User Premium Member CAT Tests
Re: In a box of 12 pens, a total of 3 are defective. If a customer buys 2  [#permalink]

Show Tags

New post 08 Jan 2017, 00:09
Bunuel wrote:
In a box of 12 pens, a total of 3 are defective. If a customer buys 2 pens selected at random from the box, what is the probability that neither pen will be defective?

A. 1/6
B. 2/9
C. 6/11
D. 9/16
E. 3/4


Kudos for a correct solution.


Bunuel What if Probability (Neither pen will be defective) = 1-Probability (defective both time) = 1- (3/12)*(2/11) = 21/22 ?

I get the different yield.
_________________

"Be challenged at EVERY MOMENT."

“Strength doesn’t come from what you can do. It comes from overcoming the things you once thought you couldn’t.”

"Each stage of the journey is crucial to attaining new heights of knowledge."

Rules for posting in verbal forum | Please DO NOT post short answer in your post!

Advanced Search : https://gmatclub.com/forum/advanced-search/

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 51035
Re: In a box of 12 pens, a total of 3 are defective. If a customer buys 2  [#permalink]

Show Tags

New post 08 Jan 2017, 05:00
ziyuenlau wrote:
Bunuel wrote:
In a box of 12 pens, a total of 3 are defective. If a customer buys 2 pens selected at random from the box, what is the probability that neither pen will be defective?

A. 1/6
B. 2/9
C. 6/11
D. 9/16
E. 3/4


Kudos for a correct solution.


Bunuel What if Probability (Neither pen will be defective) = 1-Probability (defective both time) = 1- (3/12)*(2/11) = 21/22 ?

I get the different yield.


P(Neither pen will be defective) = 1 - (P(both pens are defective) + P(one of the pens is defective)) = 1 - (3/12*2/11 + 2*3/12*9/11) = 6/11.

Hope it's clear.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Senior SC Moderator
User avatar
V
Joined: 14 Nov 2016
Posts: 1323
Location: Malaysia
GMAT ToolKit User Premium Member CAT Tests
In a box of 12 pens, a total of 3 are defective. If a customer buys 2  [#permalink]

Show Tags

New post 08 Jan 2017, 05:15
A shipment of 8 TV sets contains 2 black and white sets and 6 color sets. If 2 TV sets are to be chosen at random from this shipment, what is the probability that at least 1 of the 2 sets chosen will be a black and white set?

A) 1/7
B) 1/4
C) 5/14
D) 11/28
E) 13/26


Corrected the answer choices: E should read 13/28.

PROBABILITY APPROACH:

P(at leas one)=1-P(none)=1-6/8*5/7=13/28.

Bunuel I am confused with this approach.
_________________

"Be challenged at EVERY MOMENT."

“Strength doesn’t come from what you can do. It comes from overcoming the things you once thought you couldn’t.”

"Each stage of the journey is crucial to attaining new heights of knowledge."

Rules for posting in verbal forum | Please DO NOT post short answer in your post!

Advanced Search : https://gmatclub.com/forum/advanced-search/

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 51035
Re: In a box of 12 pens, a total of 3 are defective. If a customer buys 2  [#permalink]

Show Tags

New post 08 Jan 2017, 06:35
ziyuenlau wrote:
A shipment of 8 TV sets contains 2 black and white sets and 6 color sets. If 2 TV sets are to be chosen at random from this shipment, what is the probability that at least 1 of the 2 sets chosen will be a black and white set?

A) 1/7
B) 1/4
C) 5/14
D) 11/28
E) 13/26


Corrected the answer choices: E should read 13/28.

PROBABILITY APPROACH:

P(at leas one)=1-P(none)=1-6/8*5/7=13/28.

Bunuel I am confused with this approach.


This question is discussed here: a-shipment-of-8-television-sets-contains-2-black-and-white-sets-and-89561.html
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Manager
Manager
avatar
S
Joined: 03 Jan 2017
Posts: 153
Re: In a box of 12 pens, a total of 3 are defective. If a customer buys 2  [#permalink]

Show Tags

New post 25 Mar 2017, 08:51
We can solve it using 2 methods: combinatorics and simple probability

1) Combinatorics
2C9/2C11=6/11
2) probability; 1st pen non-defective: 9/12 AND 2nd non defective 8/11
9/12*11/12=6/11
Intern
Intern
avatar
B
Joined: 15 Aug 2016
Posts: 3
Re: In a box of 12 pens, a total of 3 are defective. If a customer buys 2  [#permalink]

Show Tags

New post 13 Apr 2017, 10:58
How do you know when to use the (9/12) * (8/11) and when to use (9/12) * (9/12)? It doesn't explicitly say that the customer picks one pen and then another pen afterward. Couldn't the customer have taken both pens at the same time?
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 51035
Re: In a box of 12 pens, a total of 3 are defective. If a customer buys 2  [#permalink]

Show Tags

New post 13 Apr 2017, 23:53
elhho wrote:
How do you know when to use the (9/12) * (8/11) and when to use (9/12) * (9/12)? It doesn't explicitly say that the customer picks one pen and then another pen afterward. Couldn't the customer have taken both pens at the same time?


1. If the drawing is with replacement it's explicitly mentioned. If it's not mentioned, then it's without replacement.

2. Mathematically the probability of picking two balls simultaneously, or picking them one at a time (without replacement) is the same.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Intern
Intern
avatar
B
Joined: 15 Aug 2016
Posts: 3
Re: In a box of 12 pens, a total of 3 are defective. If a customer buys 2  [#permalink]

Show Tags

New post 14 Apr 2017, 04:34
Bunuel wrote:
elhho wrote:
How do you know when to use the (9/12) * (8/11) and when to use (9/12) * (9/12)? It doesn't explicitly say that the customer picks one pen and then another pen afterward. Couldn't the customer have taken both pens at the same time?


1. If the drawing is with replacement it's explicitly mentioned. If it's not mentioned, then it's without replacement.

2. Mathematically the probability of picking two balls simultaneously, or picking them one at a time (without replacement) is the same.


Ohh...that makes sense :)

I definitely overlooked that. So, replacement = same numerator & denominator; no replacement = subtract one from numerator + denominator. Thanks!!
Target Test Prep Representative
User avatar
G
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2830
Re: In a box of 12 pens, a total of 3 are defective. If a customer buys 2  [#permalink]

Show Tags

New post 19 Apr 2017, 15:15
1
Bunuel wrote:
In a box of 12 pens, a total of 3 are defective. If a customer buys 2 pens selected at random from the box, what is the probability that neither pen will be defective?

A. 1/6
B. 2/9
C. 6/11
D. 9/16
E. 3/4


Since there are 3 defective pens from 12, the probability of selecting the first non-defective pen is 9/12 and the probability of selecting the second non-defective pen is 8/11. Thus, the probability that a customer buys 2 non-defective pens is 9/12 x 8/11 = 3/4 x 8/11 = 24/44 = 6/11.

Answer: C
_________________

Jeffery Miller
Head of GMAT Instruction

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

CEO
CEO
User avatar
D
Joined: 11 Sep 2015
Posts: 3222
Location: Canada
Re: In a box of 12 pens, a total of 3 are defective. If a customer buys 2  [#permalink]

Show Tags

New post 13 Dec 2017, 16:01
Top Contributor
Bunuel wrote:
In a box of 12 pens, a total of 3 are defective. If a customer buys 2 pens selected at random from the box, what is the probability that neither pen will be defective?

A. 1/6
B. 2/9
C. 6/11
D. 9/16
E. 3/4


P(neither pen is defective) = P(1st pen selected is NOT defective AND 2nd pen selected is NOT defective)
= P(1st pen selected is NOT defective) x P(2nd pen selected is NOT defective)
= 9/12 x 8/11
= 6/11
= C

ASIDE: How did I get 9/12 and 8/11?
For the first selection, 9 of the 12 pens are good.
For the second selection, we must assume that the first selection resulted in a GOOD pen. This means there are now 11 pens remaining, and 8 of them are GOOD.

RELATED VIDEO FROM OUR COURSE

_________________

Test confidently with gmatprepnow.com
Image

VP
VP
User avatar
P
Joined: 09 Mar 2016
Posts: 1202
Re: In a box of 12 pens, a total of 3 are defective. If a customer buys 2  [#permalink]

Show Tags

New post 25 Feb 2018, 04:32
Bunuel wrote:
In a box of 12 pens, a total of 3 are defective. If a customer buys 2 pens selected at random from the box, what is the probability that neither pen will be defective?

A. 1/6
B. 2/9
C. 6/11
D. 9/16
E. 3/4


Kudos for a correct solution.



YAY ! :)

Can anyone competent in probability questiones explain why my methos is not correct

So we have total 12 pens out of which 3 are defective and 9 are non defective

defective = D
non defective = N

ok so i pick one pen and second in succession -> 1/12 * 2/11 = 2/132 DD (i get both defective)

next attempt: 1/12 * 2/11 = 2/132 --- > ND

one more: 1/12 * 2/11 = 2/132 ----> NN

another attempt: 1/12 * 2/11 = 2/132 ---> DN

so i have 1/3 probality why ist it correct ? :)
GMAT Club Bot
Re: In a box of 12 pens, a total of 3 are defective. If a customer buys 2 &nbs [#permalink] 25 Feb 2018, 04:32
Display posts from previous: Sort by

In a box of 12 pens, a total of 3 are defective. If a customer buys 2

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.