Expecting Interview Invites from MIT Sloan Shortly - Join Chat Room3 for LIVE Updates

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

(1) 5^(k+1) > 3,000 --> \(5^k>600\) --> if \(k=4\) then the answer is YES: since \(600<(5^4=625)<1,000\) but if \(k=10\), for example, then the answer is NO. Not sufficient.

(2) 5^(k-1) = (5^k) - 500 --> we can solve for k and get the single numerical value of it, hence this statement is sufficient. Just to illustrate: \(5^k-5^{k-1}=500\) --> factor out \(5^{k-1}\): \(5^{k-1}(5-1)=500\) --> \(5^{k-1}=125\) --> \(k-1=3\) --> \(k=4\). Sufficient.

(1) 5^(k+1) > 3,000 --> \(5^k>600\) --> if \(k=4\) then the answer is YES: since \(600<(5^4=625)<1,000\) but if \(k=10\), for example, then the answer is NO. Not sufficient.

(2) 5^(k-1) = (5^k) - 500 --> we can solve for k and get the single numerical value of it, hence this statement is sufficient. Just to illustrate: \(5^k-5^{k-1}=500\) --> factor out \(5^{k-1}\): \(5^{k-1}(5-1)=500\) --> \(5^{k-1}=125\) --> \(k-1=3\) --> \(k=4\). Sufficient.

Answer: B.

Hope it's clear.

Hey Bunuel,

could you explain why you can factor out 5^k-1 from 5^k? I don't understand why that is possible.

(1) 5^(k+1) > 3,000 --> \(5^k>600\) --> if \(k=4\) then the answer is YES: since \(600<(5^4=625)<1,000\) but if \(k=10\), for example, then the answer is NO. Not sufficient.

(2) 5^(k-1) = (5^k) - 500 --> we can solve for k and get the single numerical value of it, hence this statement is sufficient. Just to illustrate: \(5^k-5^{k-1}=500\) --> factor out \(5^{k-1}\): \(5^{k-1}(5-1)=500\) --> \(5^{k-1}=125\) --> \(k-1=3\) --> \(k=4\). Sufficient.

Answer: B.

Hope it's clear.

Hey Bunuel,

could you explain why you can factor out 5^k-1 from 5^k? I don't understand why that is possible.

Operations involving the same bases: Keep the base, add or subtract the exponent (add for multiplication, subtract for division) \(a^n*a^m=a^{n+m}\)

Re: Is 5^k less than 1,000? (1) 5^(k+1) > 3,000 [#permalink]

Show Tags

12 Nov 2014, 00:37

If we know the first few powers of 5 it gets real easy. for example \(5^2=25, 5^3=125, 5^4=25^2=625, 5^5=3125\)

I read somewhere that a gmat taker should ideally know these - decimal value of common fractions- 1/2, 1/3, 1/4, 1/5- in turn we'll know 2/3, 2/5, 3/4, 1/8... - factorials till 6! maybe - perfect squares (say till 25) - first 5 powers of 2,3,4,5

Sorry if this is bad advice. Works for some, not all.

Re: Is 5^k less than 1,000? (1) 5^(k+1) > 3,000 [#permalink]

Show Tags

28 Jan 2016, 05:17

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Its been long time coming. I have always been passionate about poetry. It’s my way of expressing my feelings and emotions. And i feel a person can convey...

Written by Scottish historian Niall Ferguson , the book is subtitled “A Financial History of the World”. There is also a long documentary of the same name that the...

Post-MBA I became very intrigued by how senior leaders navigated their career progression. It was also at this time that I realized I learned nothing about this during my...