Last visit was: 20 Nov 2025, 00:06 It is currently 20 Nov 2025, 00:06
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
LalaB
User avatar
Current Student
Joined: 23 Oct 2010
Last visit: 17 Jul 2016
Posts: 227
Own Kudos:
1,328
 [37]
Given Kudos: 73
Location: Azerbaijan
Concentration: Finance
Schools: HEC '15 (A)
GMAT 1: 690 Q47 V38
Schools: HEC '15 (A)
GMAT 1: 690 Q47 V38
Posts: 227
Kudos: 1,328
 [37]
4
Kudos
Add Kudos
32
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,408
Own Kudos:
778,416
 [9]
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,408
Kudos: 778,416
 [9]
4
Kudos
Add Kudos
5
Bookmarks
Bookmark this Post
General Discussion
avatar
blink005
Joined: 20 Aug 2011
Last visit: 23 Jun 2016
Posts: 61
Own Kudos:
215
 [4]
Posts: 61
Kudos: 215
 [4]
4
Kudos
Add Kudos
Bookmarks
Bookmark this Post
avatar
SaraLotfy
Joined: 24 Apr 2013
Last visit: 28 Oct 2013
Posts: 43
Own Kudos:
Given Kudos: 23
Location: United States
Posts: 43
Kudos: 30
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I chose D

St (1) No house is without a backyard ----> so we know that every house must have a backyard. so the number of houses must equal 40. Sufficient

St (2) Each house that has a front porch CAN NOT have a front yard. This means that the 20 houses with front porches are separate and distinct from the other 20 houses that have front yards. there is no overlap here. so total houses= 20 front porches + 20 front yards = 40. Sufficient

Note that there are no houses that have neither. SO it is one big set of 40 houses that encompass 2 distinct sets of 20 front porches and 20 front yards

Both statements are sufficient D
User avatar
shameekv
Joined: 29 Aug 2013
Last visit: 11 Aug 2020
Posts: 50
Own Kudos:
180
 [4]
Given Kudos: 26
Location: United States
Concentration: Finance, International Business
GMAT 1: 590 Q41 V29
GMAT 2: 540 Q44 V20
GPA: 3.5
WE:Programming (Computer Software)
GMAT 2: 540 Q44 V20
Posts: 50
Kudos: 180
 [4]
4
Kudos
Add Kudos
Bookmarks
Bookmark this Post
SaraLotfy
I chose D

St (1) No house is without a backyard ----> so we know that every house must have a backyard. so the number of houses must equal 40. Sufficient

St (2) Each house that has a front porch CAN NOT have a front yard. This means that the 20 houses with front porches are separate and distinct from the other 20 houses that have front yards. there is no overlap here. so total houses= 20 front porches + 20 front yards = 40. Sufficient

Note that there are no houses that have neither. SO it is one big set of 40 houses that encompass 2 distinct sets of 20 front porches and 20 front yards

Both statements are sufficient D

I don't think it is D. Since 2nd statement gives you information that there are atleast 40 houses on the lane. But doesn't give you any information about the houses that have backyards.

The situation might be that 20 have front porches, 20 have front yards and all of these 40 houses have backyards.
But it can also be that 20 have front porches, 20 have front yards and none of these 40 houses have backyards. Therefore in that case there will be 80 houses in total..

Hence you get 2 different situations with the statement and hence answer will only be A.

Consider Kudos if the post helped. :-D
User avatar
jlgdr
Joined: 06 Sep 2013
Last visit: 24 Jul 2015
Posts: 1,311
Own Kudos:
Given Kudos: 355
Concentration: Finance
Posts: 1,311
Kudos: 2,863
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I don't understand any of the explanations above. How are we supposed to know which categories overlap and which do not?

Thanks
Cheers!
J :)

I'm betting on you B1
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,408
Own Kudos:
778,416
 [1]
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,408
Kudos: 778,416
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
mahendru1992
Bunuel
jlgdr
I don't understand any of the explanations above. How are we supposed to know which categories overlap and which do not?

Thanks
Cheers!
J :)

I'm betting on you B1

Of all the houses on Kermit Lane, 20 have front porches, 20 have front yards, and 40 have back yards. How many houses are on Kermit Lane?

(1) No house on Kermit Lane is without a back yard. This implies that ALL house on Kermit Lane are with a back yard. Since we know that there are 40 houses with a back yard, then there must be 40 houses on the street. Sufficient.

(2) Each house on Kermit Lane that has a front porch does not have a front yard. This implies that houses with a front porch (20) and the houses with a front yard (20) does not overlap. Thus there must be at least 20 + 20 = 40 houses (20 with a front porch and a back yard + 20 with a front yard and a back yard) and at most 20 + 20 + 40 = 80 houses (in case the houses with a back yard does not overlap with other categories). Not sufficient.

Answer: A.

Hope it's clear.
I don't understand A
Granted the total no is 40, but the no of houses can still overlap
Say there are 16 houses with front porches and 19 with front yards, implying that there are 5 that have both in common. Thus the total no of houses could be 35 or some other variation.
What am i missing here?

The total number of houses cannot be 35 or any other number but 40. How can it be 35 if we know that there are 40 houses with a back yard?

We are given that there are 40 houses with a back yards. From (1) we can deduce that ALL houses are with a back yard (there are no house without it). If ALL houses are with a back yard and there are total of 40 houses with a back yard, there must be total of 40 houses.

Does this make sense?
avatar
saikrishna123
Joined: 31 Jul 2014
Last visit: 10 Feb 2015
Posts: 17
Own Kudos:
Given Kudos: 12
Posts: 17
Kudos: 12
Kudos
Add Kudos
Bookmarks
Bookmark this Post
How come we are ignoring the option of a house not having front porch, front yard or back yard?...I agree its uncommon in US but not uncommon in my home country to not have all 3 :)

What am I missing?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,408
Own Kudos:
778,416
 [1]
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,408
Kudos: 778,416
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
saikrishna123
How come we are ignoring the option of a house not having front porch, front yard or back yard?...I agree its uncommon in US but not uncommon in my home country to not have all 3 :)

What am I missing?

Have you read this: of-all-the-houses-on-kermit-lane-20-have-front-porches-122300.html#p1365333 and this: of-all-the-houses-on-kermit-lane-20-have-front-porches-122300.html#p1386111

(1) says that there are 0 houses on Kermit Lane without a back yard! So, ALL houses are with a back yard.
User avatar
BillyZ
User avatar
Current Student
Joined: 14 Nov 2016
Last visit: 03 May 2025
Posts: 1,143
Own Kudos:
Given Kudos: 926
Location: Malaysia
Concentration: General Management, Strategy
GMAT 1: 750 Q51 V40 (Online)
GPA: 3.53
Products:
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
jlgdr
I don't understand any of the explanations above. How are we supposed to know which categories overlap and which do not?

Thanks
Cheers!
J :)

I'm betting on you B1

Of all the houses on Kermit Lane, 20 have front porches, 20 have front yards, and 40 have back yards. How many houses are on Kermit Lane?

(1) No house on Kermit Lane is without a back yard. This implies that ALL house on Kermit Lane are with a back yard. Since we know that there are 40 houses with a back yard, then there must be 40 houses on the street. Sufficient.

(2) Each house on Kermit Lane that has a front porch does not have a front yard. This implies that houses with a front porch (20) and the houses with a front yard (20) does not overlap. Thus there must be at least 20 + 20 = 40 houses (20 with a front porch and a back yard + 20 with a front yard and a back yard) and at most 20 + 20 + 40 = 80 houses (in case the houses with a back yard does not overlap with other categories). Not sufficient.

Answer: A.

Hope it's clear.

Dear Bunuel, What does the sentence means [ in case the houses with a back yard does not overlap with other categories ] ? Since we know the total number of houses located on Kermit Lane, therefore I thought it is sufficient. But then, why it is insufficient?
Attachments

Front yard.jpg
Front yard.jpg [ 541.29 KiB | Viewed 16619 times ]

User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,408
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,408
Kudos: 778,416
Kudos
Add Kudos
Bookmarks
Bookmark this Post
ziyuenlau
Bunuel
jlgdr
I don't understand any of the explanations above. How are we supposed to know which categories overlap and which do not?

Thanks
Cheers!
J :)

I'm betting on you B1

Of all the houses on Kermit Lane, 20 have front porches, 20 have front yards, and 40 have back yards. How many houses are on Kermit Lane?

(1) No house on Kermit Lane is without a back yard. This implies that ALL house on Kermit Lane are with a back yard. Since we know that there are 40 houses with a back yard, then there must be 40 houses on the street. Sufficient.

(2) Each house on Kermit Lane that has a front porch does not have a front yard. This implies that houses with a front porch (20) and the houses with a front yard (20) does not overlap. Thus there must be at least 20 + 20 = 40 houses (20 with a front porch and a back yard + 20 with a front yard and a back yard) and at most 20 + 20 + 40 = 80 houses (in case the houses with a back yard does not overlap with other categories). Not sufficient.

Answer: A.

Hope it's clear.

Dear Bunuel, What does the sentence means [ in case the houses with a back yard does not overlap with other categories ] ? Since we know the total number of houses located on Kermit Lane, therefore I thought it is sufficient. But then, why it is insufficient?

I tried to explain it here: of-all-the-houses-on-kermit-lane-20-have-front-porches-122300.html#p1386111

(1) says that there are 0 houses on Kermit Lane without a back yard! So, ALL houses are with a back yard.
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,592
Own Kudos:
Posts: 38,592
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
105408 posts
496 posts