WizakoBaskar
A rejoinder to my earlier discussion
For the given 5 choices, 108 is the least number.
However, the smallest possible common multiple of 3 distinct integers greater than 26 is 84 and NOT 108.
Reason
We started with 27 as the smallest integer greater than 26. Therefore, we went with 27a, 27b, and 27c being 27, 27*2 and 27*4. a, b, and c had to be integers. Else, 27, 27a, and 27b will not be integers.
What if we started with 28. Because 28 is an even number, our a, b, and c need not be integers.
We could opt for a = 1, b = 1.5 and c = 3. The LCM of 1, 1.5 and 3 is 3, which is lesser than the LCM of 1, 2, and 4
And because, 28 is even 28 * 1.5 will be an integer.
i.e., the 3 numbers could be 28, 42 and 84. The LCM will be 84.
If you are not convinced about a, b, and c being 1, 1.5 and 3, instead of considering it as 28a, 28b, 28c, think of the numbers as 14x, 14y, 14z where x, y, and z are 2, 3 and 6.
14*2 = 28, 14*3 = 42 and 14*6 = 84, all of which are greater than 26.
84 is the smallest possible common multiple of 3 distinct numbers greater than 26.
What if we consider least three integer after 26, i.e. 27,28 and 29, and break it down to its prime factors. We will find that the common multiple must have 2,3 and 7 among its multiples. Which renders option B and E useless. Now between remaining options we can select the smallest but it still doesn't answer about 29, which is a prime number. Could you please elaborate if my reasoning is correct ?