GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 17 Nov 2018, 14:08

Gmatbusters' Weekly Quant Quiz

Join here 


Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Events & Promotions in November
PrevNext
SuMoTuWeThFrSa
28293031123
45678910
11121314151617
18192021222324
2526272829301
Open Detailed Calendar
  • FREE Quant Workshop by e-GMAT!

     November 18, 2018

     November 18, 2018

     07:00 AM PST

     09:00 AM PST

    Get personalized insights on how to achieve your Target Quant Score. November 18th, 7 AM PST
  • How to QUICKLY Solve GMAT Questions - GMAT Club Chat

     November 20, 2018

     November 20, 2018

     09:00 AM PST

     10:00 AM PST

    The reward for signing up with the registration form and attending the chat is: 6 free examPAL quizzes to practice your new skills after the chat.

A company that ships boxes to a total of 12 distribution centers uses

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 50623
A company that ships boxes to a total of 12 distribution centers uses  [#permalink]

Show Tags

New post 06 Mar 2014, 01:57
2
19
00:00
A
B
C
D
E

Difficulty:

  45% (medium)

Question Stats:

65% (01:11) correct 35% (01:19) wrong based on 852 sessions

HideShow timer Statistics

A company that ships boxes to a total of 12 distribution centers uses color coding to identify each center. If either a single color or a pair of two different colors is chosen to represent each center and if each center is uniquely represented by that choice of one or two colors, what is the minimum number of colors needed for the coding? (Assume that the order of the colors in a pair does not matter.)

(A) 4
(B) 5
(C) 6
(D) 12
(E) 24

Problem Solving
Question: 132
Category: Arithmetic Elementary combinatorics
Page: 79
Difficulty: 600


The Official Guide For GMAT® Quantitative Review, 2ND Edition

_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Most Helpful Expert Reply
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 50623
Re: A company that ships boxes to a total of 12 distribution centers uses  [#permalink]

Show Tags

New post 08 Mar 2014, 11:46
2
9
Similar questions to practice:
each-student-at-a-certain-university-is-given-a-four-charact-151945.html
all-of-the-stocks-on-the-over-the-counter-market-are-126630.html
if-a-code-word-is-defined-to-be-a-sequence-of-different-126652.html
a-4-letter-code-word-consists-of-letters-a-b-and-c-if-the-59065.html
a-5-digit-code-consists-of-one-number-digit-chosen-from-132263.html
a-company-that-ships-boxes-to-a-total-of-12-distribution-95946.html
a-company-plans-to-assign-identification-numbers-to-its-empl-69248.html
the-security-gate-at-a-storage-facility-requires-a-five-109932.html
all-of-the-bonds-on-a-certain-exchange-are-designated-by-a-150820.html
a-local-bank-that-has-15-branches-uses-a-two-digit-code-to-98109.html
a-researcher-plans-to-identify-each-participant-in-a-certain-134584.html
baker-s-dozen-128782-20.html#p1057502
in-a-certain-appliance-store-each-model-of-television-is-136646.html
m04q29-color-coding-70074.html
john-has-12-clients-and-he-wants-to-use-color-coding-to-iden-107307.html
how-many-4-digit-even-numbers-do-not-use-any-digit-more-than-101874.html
a-certain-stock-exchange-designates-each-stock-with-a-85831.html
the-simplastic-language-has-only-2-unique-values-and-105845.html
m04q29-color-coding-70074.html
the-telephone-company-wants-to-add-an-area-code-composed-of-20252.html
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Most Helpful Community Reply
Director
Director
User avatar
Joined: 25 Apr 2012
Posts: 689
Location: India
GPA: 3.21
WE: Business Development (Other)
Premium Member Reviews Badge
Re: A company that ships boxes to a total of 12 distribution centers uses  [#permalink]

Show Tags

New post 06 Mar 2014, 03:16
5
5
A company that ships boxes to a total of 12 distribution centers uses color coding to identify each center. If either a single color or a pair of two different colors is chosen to represent each center and if each center is uniquely represented by that choice of one or two colors, what is the minimum number of colors needed for the coding? (Assume that the order of the colors in a pair does not matter.)

(A) 4
(B) 5
(C) 6
(D) 12
(E) 24


Sol: Let's start with 4 minimum number of colors

So single color code we can make 4 nos.
Now if we need to make 2 color combination out of 4 we can do so in 4!/2!*2! or 4*3/2 or 6

So total we can make 4+6=10 color combinations but we have 12 boxes

So let's look at 5 we get 5 single color codes
and out 5 color choices, we can choose 2 in 5!/2!*3! ways or 10 ways.
So total we can have 5+10=15 color combinations.

So, minimum number we need will be 5

Ans is B........
_________________


“If you can't fly then run, if you can't run then walk, if you can't walk then crawl, but whatever you do you have to keep moving forward.”

General Discussion
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 50623
Re: A company that ships boxes to a total of 12 distribution centers uses  [#permalink]

Show Tags

New post 06 Mar 2014, 01:58
4
4
SOLUTION

A company that ships boxes to a total of 12 distribution centers uses color coding to identify each center. If either a single color or a pair of two different colors is chosen to represent each center and if each center is uniquely represented by that choice of one or two colors, what is the minimum number of colors needed for the coding? (Assume that the order of the colors in a pair does not matter.)

(A) 4
(B) 5
(C) 6
(D) 12
(E) 24

You can use trial and error method as well as algebraic approach:

Let # of colors needed be \(n\), then it must be true that \(n+C^2_n\geq{12}\) (\(C^2_n\) - # of ways to choose the pair of different colors from \(n\) colors when order doesn't matter) --> \(n+\frac{n(n-1)}{2}\geq{12}\) --> \(2n+n(n-1)\geq{24}\) --> \(n(n+1)\geq{24}\) --> as \(n\) is an integer (it represents # of colors) \(n\geq{5}\) --> \(n_{min}=5\).

Answer: B.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Manager
Manager
avatar
Joined: 04 Jan 2014
Posts: 118
GMAT 1: 660 Q48 V32
GMAT 2: 630 Q48 V28
GMAT 3: 680 Q48 V35
Re: A company that ships boxes to a total of 12 distribution centers uses  [#permalink]

Show Tags

New post 06 Mar 2014, 02:18
4
1
Let the colors be n. We need to find the min value of n for which nC2 >= 12.

Using answer choices, if n = 5; 5C2 = 10 so we are short by 2.
If n = 6, 6C2 = 15. Good!

Answer (C).
Intern
Intern
avatar
Joined: 26 Feb 2012
Posts: 14
Concentration: Strategy, International Business
Schools: INSEAD Jan '16
GMAT 3: 640 Q49 V29
Re: A company that ships boxes to a total of 12 distribution centers uses  [#permalink]

Show Tags

New post 06 Mar 2014, 03:19
2
1
Bunuel wrote:

A company that ships boxes to a total of 12 distribution centers uses color coding to identify each center. If either a single color or a pair of two different colors is chosen to represent each center and if each center is uniquely represented by that choice of one or two colors, what is the minimum number of colors needed for the coding? (Assume that the order of the colors in a pair does not matter.)

(A) 4
(B) 5
(C) 6
(D) 12
(E) 24

Problem Solving
Question: 132
Category: Arithmetic Elementary combinatorics
Page: 79
Difficulty: 600



The statement says a single color or a pair of two different colors is chosen to represent each center.
Hence, the number of combinations have to be greater or equal than 12:

\(nC1 + nC2 >= 12\)

Where:

\(nC1 = n\)

\(nC2 = \frac{n*(n-1)}{2}\)

So:

\(nC1 + nC2 = n+\frac{n*(n-1)}{2} >= 12\)

\(\frac{2n+n*(n-1)}{2} >= 12\)

\(2n+n*(n-1) >= 24\)

\(n2+n >= 24\)

We can now pick values for n, which will be faster than solving:

If n=4,

\(n2+n = 20 < 24\)

If n=5,

\(n2+n = 29 >= 24\)

Answer: B (n=5)

For those willing to solve for n:

\(n2+n >= 24\)

\(n2+n -24 >0\)

Solving for n,

\(\frac{-1+-sqroot(1+96)}{2}\)

\(\frac{-1+-sqroot(97)}{2}\)


We don't really need to solve the square root:

- Negative option of the square root is not possible
- The positive option can be approximated by

\(\frac{1+sqroot(100)}{2} = (approx.)= 5\)

(but slightly less than 5)

Given that the inequality is:

\(n2+n -24 >0\)

Any value of n>=(slightly less than 5) will make the inequality positive.

Hence n=5

Answer: B (n=5)
Manager
Manager
avatar
Joined: 06 Dec 2014
Posts: 67
GMAT 1: 670 Q48 V34
Premium Member
Re: A company that ships boxes to a total of 12 distribution centers uses  [#permalink]

Show Tags

New post 18 Feb 2015, 14:23
Can anyone tell me when we use n^2 and when we use n+nC2 ????

In this color question we use n+nC2 >= 12

In integer questions we use n^2>=15 ....
EMPOWERgmat Instructor
User avatar
V
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 12871
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Re: A company that ships boxes to a total of 12 distribution centers uses  [#permalink]

Show Tags

New post 18 Feb 2015, 21:24
1
2
Hi gmathopeful90,

The "restrictions" in the question are what dictate the math.

Consider these possible scenarios:

1) You have 5 different colors to choose from and two different rooms to paint. You can use the same color in both rooms. How many different color combinations are there for the two rooms?

Here, the first room could be 5 different colors and the second room could be 5 different colors, so (5)(5) = 5^2 = 25 options.

2) You have 5 different colors to choose from and two different rooms to paint. You CANNOT use the same color in both rooms. How many different color combinations are there for the two rooms?

Here, the first room could be 5 different colors; once you assign that first color, the second room could only be 4 different colors, so (5)(4) = 20 options.

3) You have 5 different colors to choose from. How many different 1-color and 2-color codes can you form with the following restrictions: the 2-color codes must use 2 DIFFERENT colors and the order of the colors does not matter (so blue-green is the SAME code as green-blue)?

Here, you start with the 5 different 1-color codes, then 5c2 different 2-color codes = 5 + 10 = 15 codes.

GMAT assassins aren't born, they're made,
Rich
_________________

760+: Learn What GMAT Assassins Do to Score at the Highest Levels
Contact Rich at: Rich.C@empowergmat.com

Rich Cohen

Co-Founder & GMAT Assassin

Special Offer: Save $75 + GMAT Club Tests Free
  Official GMAT Exam Packs + 70 Pt. Improvement Guarantee
www.empowergmat.com/

*****Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!*****

Manager
Manager
avatar
Joined: 06 Dec 2014
Posts: 67
GMAT 1: 670 Q48 V34
Premium Member
Re: A company that ships boxes to a total of 12 distribution centers uses  [#permalink]

Show Tags

New post 19 Feb 2015, 12:59
Thanks for the reply :)

Do you mean in questions where we assume order of colors in cominations matters, we can use 5*4..
But where color doesn't matter, we use 5C2 ???

This explains stuff for me :)
EMPOWERgmat Instructor
User avatar
V
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 12871
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Re: A company that ships boxes to a total of 12 distribution centers uses  [#permalink]

Show Tags

New post 19 Feb 2015, 13:24
1
2
Hi gmathopeful90,

You've hit on THE key difference between Permutation and Combination questions: does the order MATTER or not.

IF you're putting things in order (the word "arrange" or "arrangements" often shows up in these types of questions), then you have to keep track of the number of options at each "step" and standard multiplication is involved.

IF you're picking combinations of things (the word "combination" is the common word in these questions), then the order of the items does NOT matter and you have to use the Combination Formula.

One of the interesting "design elements" of Official GMAT questions is that you can use either of the above approaches on certain types of prompts - you just have to be careful about how you set up the math (and you have to be really organized with your work).

GMAT assassins aren't born, they're made,
Rich
_________________

760+: Learn What GMAT Assassins Do to Score at the Highest Levels
Contact Rich at: Rich.C@empowergmat.com

Rich Cohen

Co-Founder & GMAT Assassin

Special Offer: Save $75 + GMAT Club Tests Free
  Official GMAT Exam Packs + 70 Pt. Improvement Guarantee
www.empowergmat.com/

*****Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!*****

Manager
Manager
User avatar
Joined: 05 Jul 2015
Posts: 101
Concentration: Real Estate, International Business
GMAT 1: 600 Q33 V40
GPA: 3.3
Re: A company that ships boxes to a total of 12 distribution centers uses  [#permalink]

Show Tags

New post 22 Nov 2015, 10:48
1
I labeled the colors alphabetically and wrote them out

A
B
AB
C
CA,CB,
D
DA,DB,DC 4 Colors (ABCD) = 10 combinations so 1 more color will give more than 12 combinations.
EMPOWERgmat Instructor
User avatar
V
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 12871
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Re: A company that ships boxes to a total of 12 distribution centers uses  [#permalink]

Show Tags

New post 25 Nov 2015, 14:31
Hi DJ1986,

The 'brute force' approach that you used is PERFECT for these types of questions. When the answer choices are relatively small, it can sometimes be fastest/easiest to just put pen-to-pad and 'map out' all of the possibilities. In that way, you're not trying to make the solution overly-complicated and you're not starting at the screen (hoping that some idea will come to you). You'll likely find that you can take this approach on a few questions in the Quant section on Test Day, so don't be shy about using it (and practicing with it in mind).

GMAT assassins aren't born, they're made,
Rich
_________________

760+: Learn What GMAT Assassins Do to Score at the Highest Levels
Contact Rich at: Rich.C@empowergmat.com

Rich Cohen

Co-Founder & GMAT Assassin

Special Offer: Save $75 + GMAT Club Tests Free
  Official GMAT Exam Packs + 70 Pt. Improvement Guarantee
www.empowergmat.com/

*****Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!*****

Manager
Manager
avatar
B
Joined: 28 Apr 2016
Posts: 91
Re: A company that ships boxes to a total of 12 distribution centers uses  [#permalink]

Show Tags

New post 12 Jul 2016, 20:14
I am confused with the line 'order doesn't matter'.

Does it mean BR = RB or BR =/ to RB?.


ij78cp wrote:
I tried to do it with writing the possibilities out:

B(Blue) R(Red) Y(Yellow) P(Pink)

B
BR
RB
R
Y
YR
YB
RY
BY
P
PR
RP
PB
BP
PY
YP

I already reach 16 different combinations with only 4 colours, but the OA is 5? what´s my mistake?


EDIT:

Just figured that the ordering does not count as 2 different orders.. therefore, we need 5 colours.. thanks anyway
EMPOWERgmat Instructor
User avatar
V
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 12871
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Re: A company that ships boxes to a total of 12 distribution centers uses  [#permalink]

Show Tags

New post 14 Jul 2016, 06:06
Hi ameyaprabhu,

When the order doesn't matter, RB and BR are the SAME option (so you can't count it twice, you can only count it once). In these sorts of questions, it can often be fastest to just 'list out' the possibilities (as opposed to doing lots of complex calculations).

GMAT assassins aren't born, they're made,
Rich
_________________

760+: Learn What GMAT Assassins Do to Score at the Highest Levels
Contact Rich at: Rich.C@empowergmat.com

Rich Cohen

Co-Founder & GMAT Assassin

Special Offer: Save $75 + GMAT Club Tests Free
  Official GMAT Exam Packs + 70 Pt. Improvement Guarantee
www.empowergmat.com/

*****Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!*****

Intern
Intern
avatar
B
Joined: 06 Apr 2017
Posts: 5
Re: A company that ships boxes to a total of 12 distribution centers uses  [#permalink]

Show Tags

New post 24 Apr 2017, 22:50
Bunuel wrote:
chintzzz wrote:
A company that ships boxes to a total of 12 distribution centers uses color coding to identify each center. If either a single color or a pair of two different colors is chosen to represent each center and if each center is uniquely represented by that choice of one or two colors, what is the minimum number of colors needed for the coding? (assume that the order of colors in a pair does not matter)
A)4
B)5
C)6
D)12
E)24


You can solve by trial and error or use algebra.

Let # of colors needed be \(n\), then it must be true that \(n+C^2_n\geq{12}\) (\(C^2_n\) - # of ways to choose the pair of different colors from \(n\) colors when order doesn't matter) --> \(n+\frac{n(n-1)}{2}\geq{12}\) --> \(2n+n(n-1)\geq{24}\) --> \(n(n+1)\geq{24}\) --> as \(n\) is an integer (it represents # of colors) \(n\geq{5}\) --> \(n_{min}=5\).

Answer: B.

Hope it's clear.



Could you please explain me how you get [fraction]n(n-1)/2 from C^2_n? Shouldn't it be [fraction]n!/k!(n-k)! ?
Thanks
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 50623
Re: A company that ships boxes to a total of 12 distribution centers uses  [#permalink]

Show Tags

New post 25 Apr 2017, 01:04
matteogr wrote:
Bunuel wrote:
chintzzz wrote:
A company that ships boxes to a total of 12 distribution centers uses color coding to identify each center. If either a single color or a pair of two different colors is chosen to represent each center and if each center is uniquely represented by that choice of one or two colors, what is the minimum number of colors needed for the coding? (assume that the order of colors in a pair does not matter)
A)4
B)5
C)6
D)12
E)24


You can solve by trial and error or use algebra.

Let # of colors needed be \(n\), then it must be true that \(n+C^2_n\geq{12}\) (\(C^2_n\) - # of ways to choose the pair of different colors from \(n\) colors when order doesn't matter) --> \(n+\frac{n(n-1)}{2}\geq{12}\) --> \(2n+n(n-1)\geq{24}\) --> \(n(n+1)\geq{24}\) --> as \(n\) is an integer (it represents # of colors) \(n\geq{5}\) --> \(n_{min}=5\).

Answer: B.

Hope it's clear.



Could you please explain me how you get n(n-1)/2 from C^2_n? Shouldn't it be n!/k!(n-k)! ?
Thanks


\(C^2_n=\frac{n!}{(n-2)!*2!}=\frac{(n-2)!*(n-1)*n}{(n-2)!*2!}=\frac{(n-1)*n}{2}\).

Hope it's clear.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Director
Director
User avatar
S
Joined: 17 Dec 2012
Posts: 629
Location: India
Re: A company that ships boxes to a total of 12 distribution centers uses  [#permalink]

Show Tags

New post 20 May 2017, 19:13
2
Top Contributor
1
chintzzz wrote:
A company that ships boxes to a total of 12 distribution centers uses color coding to identify each center. If either a single color or a pair of two different colors is chosen to represent each center and if each center is uniquely represented by that choice of one or two colors, what is the minimum number of colors needed for the coding? (assume that the order of colors in a pair does not matter)

A. 4
B. 5
C. 6
D. 12
E. 24

1. Solving a simple case and then generalizing would be easy for this problem.
2. Take 2 colors Red and Blue. These two can be used in the following ways R, B, RB. i.e, 2+2C2. It can represent only 3 centers
3. Take 3 colors R, B, G. These can represent 3 +3c2=6 centers
4. Four colors can represent 4+4C2= 10 centers
5 colors can represent 5+5C2=15 centers

So we see a minimum of 5 colors are needed
_________________

Srinivasan Vaidyaraman
Sravna Holistic Solutions
http://www.sravnatestprep.com

Holistic and Systematic Approach

Target Test Prep Representative
User avatar
G
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2830
Re: A company that ships boxes to a total of 12 distribution centers uses  [#permalink]

Show Tags

New post 08 Mar 2018, 16:48
chintzzz wrote:
A company that ships boxes to a total of 12 distribution centers uses color coding to identify each center. If either a single color or a pair of two different colors is chosen to represent each center and if each center is uniquely represented by that choice of one or two colors, what is the minimum number of colors needed for the coding? (assume that the order of colors in a pair does not matter)

A. 4
B. 5
C. 6
D. 12
E. 24


Since we have only 12 distribution centers, we know we will need fewer than 12 different colors to identify them.

Let’s say we have 4 different colors; then 4C1 = 4 centers can be identified by one color, and 4C2 = 6 centers can be identified by two different colors. So a total of 4 + 6 = 10 centers can be identified.

We see that if we have only 4 different colors, we don’t have enough ID codes to assign to the 12 centers. Therefore, we need one more color.

If we have 5 different colors, then 5C1 = 5 centers can be identified by one color, and 5C2 = 10 centers can be identified by two different colors. So a total of 5 + 10 = 15 centers can be identified.

We see that if we have 5 different colors, we have more than enough ID codes to assign to the 12 centers.

Answer: B
_________________

Jeffery Miller
Head of GMAT Instruction

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

Manager
Manager
avatar
S
Joined: 24 Sep 2018
Posts: 137
CAT Tests
Re: A company that ships boxes to a total of 12 distribution centers uses  [#permalink]

Show Tags

New post 24 Sep 2018, 22:23
Quote:
This is a classic “reverse-engineering” combinatorics question. Instead of asking you to calculate the number of arrangements given certain constraints for N and K, the question gives you the target number of color arrangements and you must figure out the number of colors needed to reach that target number.


The first order of business is to try to determine whether this is an exponential, permutation, or combination, since that will affect the equation you use. Since the question states explicitly that order does not matter, you know you will be applying the combinations formula.

C=N!/K!∗(N−K)!
Reverse-engineering questions generally require you to plug in answer choices to find the one that works. You need to find an answer that sums to at least 12 arrangements, since you need to code 12 separate distribution centers. You need to do a calculation for one letter (which does not really need a formula!) and for two letters as shown below - when the smallest value reaches at least 12 you have the right answer. Let’s start with “B”. Plugging in 5 for N, we see that:

A=5!/1!∗(5−1)! + 5!/2!∗(5−2)! = 5+10 = 15

With N = 5, you have more than enough for the 12 distribution centers, but only just barely; it seems unlikely that dropping down another number would still keep it above the minimum. However, just in case, here is what it would look like if N = 4 (answer choice “A”):

A=4!/1!∗(4−1)! + 4!/2!∗(4−2)! = 4+6 = 10

Answer choice “A” drops the value below the minimum possible (we need codes for 12 distribution centers). Therefore, the minimum value for N is N = 5, and the answer is “B”.
_________________

Please award :thumbup: kudos, If this post helped you in someway. :student_man:

GMAT Club Bot
Re: A company that ships boxes to a total of 12 distribution centers uses &nbs [#permalink] 24 Sep 2018, 22:23
Display posts from previous: Sort by

A company that ships boxes to a total of 12 distribution centers uses

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.