GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 19 Apr 2019, 23:45

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

AB and CD are chords of the circle, and E and F are the midpoints of

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

 
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 54372
AB and CD are chords of the circle, and E and F are the midpoints of  [#permalink]

Show Tags

New post 02 Apr 2019, 23:42
2
3
00:00
A
B
C
D
E

Difficulty:

  75% (hard)

Question Stats:

48% (02:23) correct 53% (02:40) wrong based on 40 sessions

HideShow timer Statistics

Image
AB and CD are chords of the circle, and E and F are the midpoints of the chords, respectively. The line EF passes through the center O of the circle. If EF = 17, then what is radius of the circle?

(A) 10

(B) 12

(C) 13

(D) 15

(E) 25


Attachment:
#GREpracticequestion AB and CD are chords of the circle.jpg
#GREpracticequestion AB and CD are chords of the circle.jpg [ 17.99 KiB | Viewed 570 times ]

_________________
Director
Director
User avatar
D
Joined: 18 Jul 2018
Posts: 825
Location: India
Concentration: Finance, Marketing
WE: Engineering (Energy and Utilities)
Premium Member Reviews Badge CAT Tests
AB and CD are chords of the circle, and E and F are the midpoints of  [#permalink]

Show Tags

New post 03 Apr 2019, 11:46
1
From the figure
AE = BE = 5
CF = FD = 12
EF = 17
OE = x, Then OF = 17-x

OAE is a right angle triangle, Apply Pythagorean theorem,
OA = \(\sqrt{25+x^2}\) = radius
Similarly, OCF is a right angle triangle, Apply Pythagorean theorem,
OC = \(\sqrt{(17-x)^2+144}\) = radius

Equating both equations as both are the radii, we get
\(25+x^2 = 289+x^2-34x+144\)
34x = 408
x = 12 = OE, then OF = 5
OA = OC = \(\sqrt{25+144}\) = 13

C is the answer.
_________________
Press +1 Kudo If my post helps!
Intern
Intern
avatar
B
Joined: 18 Oct 2018
Posts: 16
AB and CD are chords of the circle, and E and F are the midpoints of  [#permalink]

Show Tags

New post Updated on: 11 Apr 2019, 12:39
1
Bunuel wrote:
Image
AB and CD are chords of the circle, and E and F are the midpoints of the chords, respectively. The line EF passes through the center O of the circle. If EF = 17, then what is radius of the circle?

(A) 10

(B) 12

(C) 13

(D) 15

(E) 25


Attachment:
#GREpracticequestion AB and CD are chords of the circle.jpg


The hypotenuses of AEO and OCF must be the same (the radius) \(AO = OC\). \(EF = 17\); one can quickly see that \(OE=12\) and \(OF = 5\).
Pythagoras Theorem: \(25 + 144 = 169\) --> Answer: C.
Realizing that \(AO = OC\) and that the specific values for OE and OF can be determined quickly without any math saves a lot of time on this question.

Originally posted by Zoom96 on 07 Apr 2019, 15:28.
Last edited by Zoom96 on 11 Apr 2019, 12:39, edited 3 times in total.
Director
Director
User avatar
D
Joined: 27 May 2012
Posts: 730
Re: AB and CD are chords of the circle, and E and F are the midpoints of  [#permalink]

Show Tags

New post 11 Apr 2019, 05:58
Zoom96 wrote:
Bunuel wrote:
Image
AB and CD are chords of the circle, and E and F are the midpoints of the chords, respectively. The line EF passes through the center O of the circle. If EF = 17, then what is radius of the circle?

(A) 10

(B) 12

(C) 13

(D) 15

(E) 25


Attachment:
#GREpracticequestion AB and CD are chords of the circle.jpg


The hypotenuses of AEO and OCF must be the same (the radius) \(AO = CD\). \(EF = 17\); one can quickly see that \(OE=12\) and \(OF = 5\).
Pythagoras Theorem: \(25 + 144 = 169\) --> Answer: C.
Realizing that \(AO =CD\) and that the specific values for OE and OF can be determined quickly without any math saves a lot of time on this question.


Hi Zoom96,
Can you please elaborate how AO=CD? Thank you.
_________________
- Stne
Intern
Intern
avatar
B
Joined: 18 Oct 2018
Posts: 16
Re: AB and CD are chords of the circle, and E and F are the midpoints of  [#permalink]

Show Tags

New post 11 Apr 2019, 12:41
stne wrote:
Zoom96 wrote:
Bunuel wrote:
Image
AB and CD are chords of the circle, and E and F are the midpoints of the chords, respectively. The line EF passes through the center O of the circle. If EF = 17, then what is radius of the circle?

(A) 10

(B) 12

(C) 13

(D) 15

(E) 25


Attachment:
#GREpracticequestion AB and CD are chords of the circle.jpg


The hypotenuses of AEO and OCF must be the same (the radius) \(AO = CD\). \(EF = 17\); one can quickly see that \(OE=12\) and \(OF = 5\).
Pythagoras Theorem: \(25 + 144 = 169\) --> Answer: C.
Realizing that \(AO =CD\) and that the specific values for OE and OF can be determined quickly without any math saves a lot of time on this question.


Hi Zoom96,
Can you please elaborate how AO=CD? Thank you.


Oh yeah my bad, I of course meant \(AO = OC\) (both are the radius). I just fixed it. Thanks.
Intern
Intern
avatar
B
Joined: 20 Jan 2019
Posts: 6
AB and CD are chords of the circle, and E and F are the midpoints of  [#permalink]

Show Tags

New post 17 Apr 2019, 10:47
Can also be solved by estimating the value by range

The the vertical lines of 5 and 12 tell us that the radius is more than 12, but just slightly...
GMAT Club Bot
AB and CD are chords of the circle, and E and F are the midpoints of   [#permalink] 17 Apr 2019, 10:47
Display posts from previous: Sort by

AB and CD are chords of the circle, and E and F are the midpoints of

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.