Last visit was: 19 Nov 2025, 05:11 It is currently 19 Nov 2025, 05:11
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,267
Own Kudos:
76,989
 [1]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 76,989
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
User avatar
deeuk
Joined: 23 Aug 2014
Last visit: 20 Mar 2015
Posts: 21
Own Kudos:
Given Kudos: 28
GMAT Date: 11-29-2014
Posts: 21
Kudos: 25
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,267
Own Kudos:
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 76,989
Kudos
Add Kudos
Bookmarks
Bookmark this Post
avatar
falewman
Joined: 08 Feb 2015
Last visit: 07 Mar 2017
Posts: 11
Own Kudos:
Given Kudos: 72
GMAT 1: 620 Q45 V30
GMAT 2: 700 Q45 V40
GMAT 3: 650 Q46 V34
GMAT 3: 650 Q46 V34
Posts: 11
Kudos: 3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
4. What is the smallest positive integer \(k\) such that \(126*\sqrt{k}\) is the square of a positive integer?
A. 14
B. 36
C. 144
D. 196
E. 441

\(126=2*3^2*7\), so in order \(126*\sqrt{k}\) to be a square of an integer \(\sqrt{k}\) must complete the powers of 2 and 7 to even number, so the least value of \(\sqrt{k}\) must equal to 2*7=14, which makes the leas value of \(k\) equal to 14^2=196.

Answer: D.

Hi Bunuel,

Thanks for your great workouts. I have a question on this one though. If K= B (36), the number would become a square of a positive integer as well. For that matter any perfect square number will do -- say 4?!

\(126*\sqrt{36}\) = 756. Why can't B be an answer. Your comment is highly appreciated.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,385
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,385
Kudos: 778,202
Kudos
Add Kudos
Bookmarks
Bookmark this Post
falewman
Bunuel
4. What is the smallest positive integer \(k\) such that \(126*\sqrt{k}\) is the square of a positive integer?
A. 14
B. 36
C. 144
D. 196
E. 441

\(126=2*3^2*7\), so in order \(126*\sqrt{k}\) to be a square of an integer \(\sqrt{k}\) must complete the powers of 2 and 7 to even number, so the least value of \(\sqrt{k}\) must equal to 2*7=14, which makes the leas value of \(k\) equal to 14^2=196.

Answer: D.

Hi Bunuel,

Thanks for your great workouts. I have a question on this one though. If K= B (36), the number would become a square of a positive integer as well. For that matter any perfect square number will do -- say 4?!

\(126*\sqrt{36}\) = 756. Why can't B be an answer. Your comment is highly appreciated.

\(126*\sqrt{k}\) must be a prefect square. If k=36, \(126*\sqrt{k}=756\), which is not a perfect square.
User avatar
solitaryreaper
Joined: 23 Sep 2013
Last visit: 21 Feb 2023
Posts: 119
Own Kudos:
Given Kudos: 95
Concentration: Strategy, Marketing
WE:Engineering (Computer Software)
Products:
Posts: 119
Kudos: 221
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
SOLUTIONS:

1. A password on Mr. Wallace's briefcase consists of 5 digits. What is the probability that the password contains exactly three digit 6?

A. 860/90,000
B. 810/100,000
C. 858/100,000
D. 860/100,000
E. 1530/100,000

Total # of 5 digit codes is 10^5, notice that it's not 9*10^4, since in a code we can have zero as the first digit.

# of passwords with three digit 6 is \(9*9*C^3_5=810\): each out of two other digits (not 6) has 9 choices, thus we have 9*9 and \(C^3_5\) is ways to choose which 3 digits will be 6's out of 5 digits we have.

\(P=\frac{favorable}{total}=\frac{810}{10^5}\)

Answer: B.

Hi Bunuel,

I have a doubt in 5C3 part in this problem.
I solved something like this:

Code will be something like this

6,6,6,A,B

this is like arranging 5 letters where 3 are exactly similar. It would give:

5! / 3! which is not equal to 5C3 .
Therefore I am getting a wrong answer.

Please correct my mistake (and why we are using Combination here while it looks like a case of Permutation).

Thanks in advance.

SR
User avatar
chetan2u
User avatar
GMAT Expert
Joined: 02 Aug 2009
Last visit: 15 Nov 2025
Posts: 11,238
Own Kudos:
43,702
 [3]
Given Kudos: 335
Status:Math and DI Expert
Location: India
Concentration: Human Resources, General Management
GMAT Focus 1: 735 Q90 V89 DI81
Products:
Expert
Expert reply
GMAT Focus 1: 735 Q90 V89 DI81
Posts: 11,238
Kudos: 43,702
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
solitaryreaper
Bunuel
SOLUTIONS:

1. A password on Mr. Wallace's briefcase consists of 5 digits. What is the probability that the password contains exactly three digit 6?

A. 860/90,000
B. 810/100,000
C. 858/100,000
D. 860/100,000
E. 1530/100,000

Total # of 5 digit codes is 10^5, notice that it's not 9*10^4, since in a code we can have zero as the first digit.

# of passwords with three digit 6 is \(9*9*C^3_5=810\): each out of two other digits (not 6) has 9 choices, thus we have 9*9 and \(C^3_5\) is ways to choose which 3 digits will be 6's out of 5 digits we have.

\(P=\frac{favorable}{total}=\frac{810}{10^5}\)

Answer: B.

Hi solitaryreaper,

there are various Queries on this Q that why don't we use permutations and use combinations..
that is why 5!/3!2! instead of 5!/3!..

firstly, yes the Question is of permutation, but we still require to use combination formula..
WHY?
we have choosen three 6 digits and 2 digits as any of the remaining three..
answer is 9*9*5C3.... and not 9*9*5P3
because the permutations will be ok till the time we have two separate digits...
and it will be combinations the moment the other two digits are same..
..
so how can we use permutations even when digits are same, and that is what we are doing when we take other two digits as 9*9..

then how do we arrive at 9*9*5!/3!2!..
there are two ways we can take the remaining two digits..

1) three 6s and both other digits are different..
aaabc b and c can be chosen out of 9 digits
ways = 9C2*5!/3!=(9*8)/2! * 5!/3!...

2)three 6s and both other digits are same..
aaabb.. b can be selected in 9 ways
ways = 9*5!/3!2!..

total ways = add the two=9*8*5/3!2! + 9*5!/3!2!= 9*5!/3!2!* (8+1)=9*9*5!/3!2!=9*9*5C3..

I hope this clears the air around the use of permutation or combination in this Q..
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,267
Own Kudos:
76,989
 [2]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 76,989
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
solitaryreaper
Bunuel
SOLUTIONS:

1. A password on Mr. Wallace's briefcase consists of 5 digits. What is the probability that the password contains exactly three digit 6?

A. 860/90,000
B. 810/100,000
C. 858/100,000
D. 860/100,000
E. 1530/100,000

Total # of 5 digit codes is 10^5, notice that it's not 9*10^4, since in a code we can have zero as the first digit.

# of passwords with three digit 6 is \(9*9*C^3_5=810\): each out of two other digits (not 6) has 9 choices, thus we have 9*9 and \(C^3_5\) is ways to choose which 3 digits will be 6's out of 5 digits we have.

\(P=\frac{favorable}{total}=\frac{810}{10^5}\)

Answer: B.

Hi Bunuel,

I have a doubt in 5C3 part in this problem.
I solved something like this:

Code will be something like this

6,6,6,A,B

this is like arranging 5 letters where 3 are exactly similar. It would give:

5! / 3! which is not equal to 5C3 .
Therefore I am getting a wrong answer.

Please correct my mistake (and why we are using Combination here while it looks like a case of Permutation).

Thanks in advance.

Now I am having a hard time to grasp how combination is giving the same answer. Can you please help me with the combination approach(how the problem translates to combination which is equivalent to the one the we got via permutation) ?

Moreover , how to decide when to use Permutation or Combination (and one that would lead to the solution in lesser time)


SR

Responding to a pm:

This is a question that haunts many - how do I know when to use permutation and when to use combination?
There is a simple solution - never use the permutation formula. The permutation formula finds very little direct use but leads to too many complications.

Always think in terms of selecting and arranging. For selecting r distinct elements out of n distinct elements, use nCr formula. Then arrange depending on whether the r elements selected need to be all distinct (r!) or some need to be same (a!/b!*c!) etc

Here, out of 9 digits you can select 2 in 9C2 ways and get a case such as 666AB. This will be arranged in 5!/3! ways.
Or you can select 1 digit out of 9 in 9C1 ways and get a case such as 666AA. This will be arranged in 5!/2!*3! ways.

9C2*5!/3! + 9C1*5!/2!*3! = 9*5!/3! * 9/2 = 810

Probability = 810/10^5

Note that you are using the Combinations formula only in this method too.

The other method using the combination formula just shows a different way of thinking.

You have 5 spots: _____ _____ _____ _____ _____

You choose any two spots out of these 5 in 5C2 ways.
For the first spot you choose, select a digit in 9 ways. For the second spot, select a digit in 9 ways.
In all remaining spots, just put 6.
This 5C2*9*9 directly gives you the total number of ways.
Note that 5C2 is the same as 5C3 (either you choose 2 spots for non 6 digits or you choose 3 spots for 6).
User avatar
duahsolo
Joined: 02 Jun 2015
Last visit: 31 Jul 2023
Posts: 143
Own Kudos:
740
 [3]
Given Kudos: 1,196
Location: Ghana
Posts: 143
Kudos: 740
 [3]
3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
7. Metropolis Corporation has 4 shareholders: Fritz, Luis, Alfred and Werner. Number of shares that Fritz owns is 2/3 rd of number of the shares of the other three shareholders, number of the shares that Luis owns is 3/7 th of number of the shares of the other three shareholders and number of the shares that Alfred owns is 4/11 th of number of the shares of the other three shareholders. If dividends of $3,600,000 were distributed among the 4 shareholders, how much of this amount did Werner receive?
A. $60,000
B. $90,000
C. $100,000
D. $120,000
E. $180,000

Solution: https://gmatclub.com/forum/baker-s-dozen ... l#p1057509




Let F represents Fritz, L for Luis, A for Alfred and W for Werner

Fritz owns 2/3rd of the shares of the other three shareholders --> F = 2/3 (3,600,000 - F) ---> 3F = 7,200,000 - 2F ---> F = 1,440,000

Luis owns 3/7th of the shares of the other three shareholders --> L = 3/7 (3,600,000 - L) ---> 7L = 10,800,000 - 3L ---> L = 1,080,000

Alfred owns 4/11th of the shares of the other three shareholders --> A = 4/11 (3,600,000 - A) ---> 11A = 14,400,000 - 4A ---> A = 960,000

W= 3,600,000 -(F + L + A) ---> 3,600,000 - (1,440,000 + 1,080,000 + 960,000) = 120,000

Answer: D
User avatar
mcelroytutoring
Joined: 10 Jul 2015
Last visit: 15 Nov 2025
Posts: 1,204
Own Kudos:
2,644
 [1]
Given Kudos: 282
Status:Expert GMAT, GRE, and LSAT Tutor / Coach
Affiliations: Harvard University, A.B. with honors in Government, 2002
Location: United States (CO)
Age: 45 (10 years and counting on GMAT Club!)
GMAT 1: 770 Q47 V48
GMAT 2: 730 Q44 V47
GMAT 3: 750 Q50 V42
GMAT 4: 730 Q48 V42 (Online)
GRE 1: Q168 V169
GRE 2: Q170 V170
Expert
Expert reply
GMAT 4: 730 Q48 V42 (Online)
GRE 1: Q168 V169
GRE 2: Q170 V170
Posts: 1,204
Kudos: 2,644
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Here's my solution for #2 (see visual below). It helps to use brackets!
Attachments

Screen Shot 2017-03-27 at 6.07.16 PM.png
Screen Shot 2017-03-27 at 6.07.16 PM.png [ 182.8 KiB | Viewed 5340 times ]

User avatar
adkikani
User avatar
IIM School Moderator
Joined: 04 Sep 2016
Last visit: 24 Dec 2023
Posts: 1,236
Own Kudos:
Given Kudos: 1,207
Location: India
WE:Engineering (Other)
Posts: 1,236
Kudos: 1,343
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel niks18

Quote:
A set A consists of 7 consecutive odd integers. If the sum of 5 largest integers of set A is -185 what is the sum of the 5 smallest integers of set A?
A. -165
B. -175
C. -195
D. -205
E. -215


Quote:

Say 7 consecutive odd integers are: \(x\), \(x+2\), \(x+4\), \(x+6\), \(x+8\), \(x+10\), \(x+12\).

I solved the same problem taking hint from number theory that a consecutive odd number is represented by:

2x+1 , 2x+3

My approach had slightly complex calculations but it ensured that my first no in series is always odd.

Is this understanding correct? Or can I still take a random integer x as start and then add +2 (to get consecutive ones)
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,385
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,385
Kudos: 778,202
Kudos
Add Kudos
Bookmarks
Bookmark this Post
adkikani
Bunuel niks18

Quote:
A set A consists of 7 consecutive odd integers. If the sum of 5 largest integers of set A is -185 what is the sum of the 5 smallest integers of set A?
A. -165
B. -175
C. -195
D. -205
E. -215


Quote:

Say 7 consecutive odd integers are: \(x\), \(x+2\), \(x+4\), \(x+6\), \(x+8\), \(x+10\), \(x+12\).

I solved the same problem taking hint from number theory that a consecutive odd number is represented by:

2x+1 , 2x+3

My approach had slightly complex calculations but it ensured that my first no in series is always odd.

Is this understanding correct? Or can I still take a random integer x as start and then add +2 (to get consecutive ones)

In this question, as shown, you can take 7 consecutive odd integers to be \(x\), \(x+2\), \(x+4\), \(x+6\), \(x+8\), \(x+10\), and \(x+12\). For some number properties questions, you should represent odd integers, as 2k + 1, 2k + 3, ... Here you can also take the integers, to be 2k + 1, 2k + 3, ... but it's not necessary.
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,267
Own Kudos:
76,989
 [1]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 76,989
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
nahid78
Bunuel
SOLUTIONS:

1. A password on Mr. Wallace's briefcase consists of 5 digits. What is the probability that the password contains exactly three digit 6?

A. 860/90,000
B. 810/100,000
C. 858/100,000
D. 860/100,000
E. 1530/100,000

Total # of 5 digit codes is 10^5, notice that it's not 9*10^4, since in a code we can have zero as the first digit.

# of passwords with three digit 6 is \(9*9*C^3_5=810\): each out of two other digits (not 6) has 9 choices, thus we have 9*9 and \(C^3_5\) is ways to choose which 3 digits will be 6's out of 5 digits we have.

\(P=\frac{favorable}{total}=\frac{810}{10^5}\)

Answer: B.

I know this is how we solve this question. But can anyone please clarify why i don't get the same result if i work differently ....

Suppose other two numbers are also same 6,6,6, and 1,1 or 6,6,6 and 2,2 so on... or other two are different. 6,6,6,1, and 2, or 6,6,6,2,and 4

You do get the same result in this case too.

If the other 2 numbers are same, number of ways = 9C1 * 5!/3!*2! = 90
If the other 2 numbers are different, number of ways = 9C2 * 5!/3! = 720

Total = 90+720 = 810
avatar
casiddharth2
Joined: 26 Sep 2018
Last visit: 22 Mar 2021
Posts: 1
Own Kudos:
1
 [1]
Given Kudos: 56
Posts: 1
Kudos: 1
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
9. If x and y are negative numbers, what is the value of \(\frac{\sqrt{x^2}}{x}-\sqrt{-y*|y|}\)?
A. 1+y
B. 1-y
C. -1-y
D. y-1
E. x-y

Note that \(\sqrt{a^2}=|a|\). Next, since \(x<0\) and \(y<0\) then \(|x|=-x\) and \(|y|=-y\).

So, \(\frac{\sqrt{x^2}}{x}-\sqrt{-y*|y|}=\frac{|x|}{x}-\sqrt{(-y)*(-y)}=\frac{-x}{x}-\sqrt{y^2}=-1-|y|=-1+y\)

Answer: D.

Just Excellent Question Bunuel...
User avatar
dips1122
Joined: 12 Oct 2019
Last visit: 24 Feb 2022
Posts: 73
Own Kudos:
Given Kudos: 92
Location: India
Concentration: Marketing, General Management
GMAT 1: 720 Q48 V41
GMAT 2: 730 Q50 V39
GMAT 3: 760 Q50 V44
GPA: 4
WE:Information Technology (Computer Software)
Products:
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
8. A set A consists of 7 consecutive odd integers. If the sum of 5 largest integers of set A is -185 what is the sum of the 5 smallest integers of set A?
A. -165
B. -175
C. -195
D. -205
E. -215

Say 7 consecutive odd integers are: \(x\), \(x+2\), \(x+4\), \(x+6\), \(x+8\), \(x+10\), \(x+12\).

Question: \(x+(x+2)+(x+4)+(x+6)+(x+8)=5x+20=?\)

Given: \((x+4)+(x+6)+(x+8)+(x+10)+(x+12)=-185\) --> \((x+4)+(x+6)+(x+8)+(x+10)+(x+12)=5x+40=-185\) --> \((5x+20)+20=-185\) --> \(5x+20=-205\)

Answer: D.


Hello Bunuel, I tried to solve it like this.. Can u please tell me where did I go wrong?

Let the smallest no. be 2n+1, so the numbers of the set will be :
2n+1, 2n+3, 2n+5, 2n+7, 2n+9, 2n+11, 2n+13

given that sum of largest 5 no.s in the set is -185.
so, 2n+5+2n+7+2n+9+2n+11+2n+13 = -185
solving, n=-23

so the no.s are -45,-47,-49,-51,-53,-55,-57

sum of smallest 5 are -49-51-53-55-57 = --265

Also, if we take into consideration that these are negative no.s, from the start we can write that 2n+1+2n+3+2n+5+2n+7+2n+9 = -185
solving n= -21
so the no.s are -41, -43, -45, -47, -49, -51, -53
sum of 5 smallest = -245

Really confused.. Please help.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,385
Own Kudos:
778,202
 [1]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,385
Kudos: 778,202
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
dips1122
Bunuel
8. A set A consists of 7 consecutive odd integers. If the sum of 5 largest integers of set A is -185 what is the sum of the 5 smallest integers of set A?
A. -165
B. -175
C. -195
D. -205
E. -215

Say 7 consecutive odd integers are: \(x\), \(x+2\), \(x+4\), \(x+6\), \(x+8\), \(x+10\), \(x+12\).

Question: \(x+(x+2)+(x+4)+(x+6)+(x+8)=5x+20=?\)

Given: \((x+4)+(x+6)+(x+8)+(x+10)+(x+12)=-185\) --> \((x+4)+(x+6)+(x+8)+(x+10)+(x+12)=5x+40=-185\) --> \((5x+20)+20=-185\) --> \(5x+20=-205\)

Answer: D.


Hello Bunuel, I tried to solve it like this.. Can u please tell me where did I go wrong?

Let the smallest no. be 2n+1, so the numbers of the set will be :
2n+1, 2n+3, 2n+5, 2n+7, 2n+9, 2n+11, 2n+13

given that sum of largest 5 no.s in the set is -185.
so, 2n+5+2n+7+2n+9+2n+11+2n+13 = -185
solving, n=-23

so the no.s are -45,-47,-49,-51,-53,-55,-57

sum of smallest 5 are -49-51-53-55-57 = --265

Also, if we take into consideration that these are negative no.s, from the start we can write that 2n+1+2n+3+2n+5+2n+7+2n+9 = -185
solving n= -21
so the no.s are -41, -43, -45, -47, -49, -51, -53
sum of 5 smallest = -245

Really confused.. Please help.

Since n = -21, then the seven consecutive numbers are: -45, -43, -41, -39, -37, -35, -33.

The sum of the five largest is -41 + (-39) + (-37) + (-35) + (-33) = -185.
The sum of the five smallest is -45 +(-43) +(-41) + (-39) + (-37) = -205.
User avatar
sujoykrdatta
Joined: 26 Jun 2014
Last visit: 19 Nov 2025
Posts: 547
Own Kudos:
Given Kudos: 13
Status:Mentor & Coach | GMAT Q51 | CAT 99.98
GMAT 1: 750 Q51 V39
Expert
Expert reply
GMAT 1: 750 Q51 V39
Posts: 547
Kudos: 1,114
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
I'm posting the next set of medium/hard PS questions. I'll post OA's with detailed explanations after some discussion. Please, post your solutions along with the answers. Good luck!

1. A password on Mr. Wallace's briefcase consists of 5 digits. What is the probability that the password contains exactly three digit 6?

A. 860/90,000
B. 810/100,000
C. 858/100,000
D. 860/100,000
E. 1530/100,000

Total digits = 10 (from 0 to 9)
Of the 5 digits, we have 6 thrice.

Case 1: Let the other 2 digits be same:
Choose that digit 'n' in 9 ways and arrange the digits of the number 666nn in 5!/3!2! = 10 ways => Total ways = 90

Case 2: Let the other 2 digits be different:
Choose the digits 'n' in 9c2 = 36 ways and arrange the digits of the number 666mn in 5!/3! = 20 ways => Total ways = 720

Thus, total such numbers = 810
Total 5-digit numbers = 10 x 10 x 10 x 10 x 10 = 10000
=> Probability = 810/10000 - Answer B
User avatar
sujoykrdatta
Joined: 26 Jun 2014
Last visit: 19 Nov 2025
Posts: 547
Own Kudos:
Given Kudos: 13
Status:Mentor & Coach | GMAT Q51 | CAT 99.98
GMAT 1: 750 Q51 V39
Expert
Expert reply
GMAT 1: 750 Q51 V39
Posts: 547
Kudos: 1,114
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
I'm posting the next set of medium/hard PS questions. I'll post OA's with detailed explanations after some discussion. Please, post your solutions along with the answers. Good luck!
13. If \(x=\frac{(8!)^{10}-(8!)^6}{(8!)^{5}-(8!)^3}\), what is the product of the tens and the units digits of \(\frac{x}{(8!)^3}-39\)?
A. 0
B. 6
C. 7
D. 12
E. 14

Solution: https://gmatclub.com/forum/baker-s-dozen ... l#p1057520

x = [(8!)^10−(8!)^6] / [(8!)^5−(8!)^3] = {(8!)^6 x [(8!)^4 − 1]} / {(8!)^3 x [(8!)^2 − 1]} = (8!)^3 x [(8!)^2 + 1]

Thus, x/(8!)^3 - 39 = (8!)^2 − 38

8! ends in 0; thus, (8!)^2 ends in 00 i.e. it is a multiple of 100

Thus, the last 2 digits of (8!)^2 − 38 are 62 => Product = 12

Answer D
User avatar
pudu
Joined: 12 Mar 2023
Last visit: 06 Mar 2024
Posts: 234
Own Kudos:
Given Kudos: 16
Location: India
Posts: 234
Kudos: 120
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
SOLUTIONS:

1. A password on Mr. Wallace's briefcase consists of 5 digits. What is the probability that the password contains exactly three digit 6?

A. 860/90,000
B. 810/100,000
C. 858/100,000
D. 860/100,000
E. 1530/100,000

The total number of 5-digit codes is \(10^5\). It's important to note that it's not \(9*10^4\), as the first digit can be zero in a password.

The number of passwords with three digits as 6 can be calculated as \(9*9*C^3_5 = 810\). We have 9 choices for each of the two remaining digits (not 6), resulting in \(9*9\). The term \(C^3_5\) represents the number of ways to choose the positions for the 6s among the five digits (essentially deciding which three out of ***** will be 6s).

The probability is therefore, \(P=\frac{favorable}{total}=\frac{810}{10^5}\).


Answer: B

why we didn't multiply it with 2! ? two non-six numbers can be arranged in 2 ways...it is a password so we have to go for arrangement...right? please someone help me to understand

regards

pudu
User avatar
ramiav
Joined: 31 Oct 2022
Last visit: 19 Jun 2025
Posts: 32
Own Kudos:
Given Kudos: 16
Location: Spain
Concentration: Entrepreneurship, Technology
GMAT Focus 1: 705 Q86 V85 DI84
GMAT Focus 1: 705 Q86 V85 DI84
Posts: 32
Kudos: 50
Kudos
Add Kudos
Bookmarks
Bookmark this Post
 
Bunuel
13. If \(x=\frac{(8!)^{10}-(8!)^6}{(8!)^{5}-(8!)^3}\), what is the product of the tens and the units digits of \(\frac{x}{(8!)^3}-39\)?
A. 0
B. 6
C. 7
D. 12
E. 14

Apply \(a^2-b^2=(a-b)(a+b)\): \(x=\frac{(8!)^{10}-(8!)^6}{(8!)^{5}-(8!)^3}=\frac{((8!)^{5}-(8!)^3)((8!)^{5}+(8!)^3)}{(8!)^{5}-(8!)^3}=(8!)^{5}+(8!)^3\).

Next, \(\frac{x}{(8!)^3}-39=\frac{(8!)^{5}+(8!)^3}{(8!)^3}=\frac{(8!)^{5}}{(8!)^3}+\frac{(8!)^{3}}{(8!)^3}-39=(8!)^2+1-39=(8!)^2-38\).

Now, since \(8!\) has 2 and 5 as its multiples, then it will have 0 as the units digit, so \((8!)^2\) will have two zeros in the end, which means that \((8!)^2-38\) will have 00-38=62 as the last digits: 6*2=12.

Answer: D.
First of all thanks fort he series
I approached the problem in a diff way
Replace 8! with A for simpler maths -> and write faster :)

\(x=\frac{(A)^{10}-(A)^6}{(A)^{5}-(A)^3}\frac\).
We extract a^3
\(x=\frac{(A)^{3}*(A)^{3}*((A)^{4}-1)}{(A)^{3}*(A)^{2}-1}\frac\).
Now on the top, we have:
\(a^2-b^2=(a-b)(a+b)\)
\(x=\frac{(A)^{3}*(A)^{3}*((A)^{2}-1)*((A)^{2}+1)}{(A)^{3}*((A)^{2}-1)}\frac\).
So we can simplify 
\(x={(A)^{3}*((A)^{2}+1)}\).
as we have x/8!^3
\({((A)^{2}+1)}-39\).
then we reach
\((8!)^2-38\) 
and we can proceed on the same way (2*5)^2 is 00 so 62 -> 6*2 = 12


 ­­­
   1   2   3   4   5   
Moderators:
Math Expert
105385 posts
Tuck School Moderator
805 posts