Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Each member of a pack of 55 wolves has either brown or blue [#permalink]

Show Tags

23 Oct 2011, 10:23

3

This post received KUDOS

20

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

95% (hard)

Question Stats:

53% (03:17) correct
47% (02:27) wrong based on 548 sessions

HideShow timer Statistics

Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves?

(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3. (2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1.

Re: Each member of a pack of 55 wolves has either brown or blue [#permalink]

Show Tags

17 Mar 2012, 03:43

LalaB wrote:

Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves? (1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3. (2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1.

Not able to understand the line " If there are more than 3 blue-eyed wolves with white coats"
_________________

Not able to understand the line " If there are more than 3 blue-eyed wolves with white coats"

Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves?

Look at the matrix below:

"There are more than 3 blue-eyed wolves with white coats" means that # of wolves which have blue eyes AND white coats is more than 3. The question asks whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3. Not sufficient on its own. (2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1. Not sufficient on its own.

(1)+(2) When taken together we get the flowing matrix:

Notice that x and y must be integers (they represent some positive multiples for the ratios given in the statements).

So, we have that 3y+7x=55. After some trial and error we can find that this equation has only 3 positive integers solutions: y=2 and x=7 --> 3y+7x=6+49=55; y=9 and x=4 --> 3y+7x=27+28=55; y=16 and x=1 --> 3y+7x=48+7=55;

Now, the third solution (x=1) is not valid, since in this case # of wolves which have blue eyes AND white coats becomes 3x=3, so not more than 3 as given in the stem. As for the first two cases, in both of them 7x is more than 3y (49>6 and 28>27), so we can answer definite YES, to the question whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

Re: Each member of a pack of 55 wolves has either brown or blue [#permalink]

Show Tags

17 Mar 2012, 10:13

Bunuel wrote:

shadabkhaniet wrote:

Not able to understand the line " If there are more than 3 blue-eyed wolves with white coats"

Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves?

Look at the matrix below:

Attachment:

Wolves.png

"There are more than 3 blue-eyed wolves with white coats" means that # of wolves which have blue eyes AND white coats is more than 3. The question asks whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3. Not sufficient on its own. (2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1. Not sufficient on its own.

(1)+(2) When taken together we get the flowing matrix:

Attachment:

Wolves (1)+(2).png

Notice that x and y must be integers (they represent some positive multiples for the ratios given in the statements).

So, we have that 3y+7x=55. After some trial and error we can find that this equation has only 3 positive integers solutions: y=2 and x=7 --> 3y+7x=6+49=55; y=9 and x=4 --> 3y+7x=27+28=55; y=16 and x=1 --> 3y+7x=48+7=55;

Now, the third solution (x=1) is not valid, since in this case # of wolves which have blue eyes AND white coats becomes 3x=3, so not more than 3 as given in the stem. As for the first two cases, in both of them 7x is more than 3y (49>6 and 28>27), so we can answer definite YES, to the question whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

Re: Each member of a pack of 55 wolves has either brown or blue [#permalink]

Show Tags

21 Aug 2013, 03:46

Bunuel wrote:

shadabkhaniet wrote:

Not able to understand the line " If there are more than 3 blue-eyed wolves with white coats"

Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves?

Look at the matrix below:

Attachment:

Wolves.png

"There are more than 3 blue-eyed wolves with white coats" means that # of wolves which have blue eyes AND white coats is more than 3. The question asks whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3. Not sufficient on its own. (2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1. Not sufficient on its own.

(1)+(2) When taken together we get the flowing matrix:

Attachment:

Wolves (1)+(2).png

Notice that x and y must be integers (they represent some positive multiples for the ratios given in the statements).

So, we have that 3y+7x=55. After some trial and error we can find that this equation has only 3 positive integers solutions: y=2 and x=7 --> 3y+7x=6+49=55; y=9 and x=4 --> 3y+7x=27+28=55; y=16 and x=1 --> 3y+7x=48+7=55;

Now, the third solution (x=1) is not valid, since in this case # of wolves which have blue eyes AND white coats becomes 3x=3, so not more than 3 as given in the stem. As for the first two cases, in both of them 7x is more than 3y (49>6 and 28>27), so we can answer definite YES, to the question whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

Answer: C.

Hope it's clear.

There could be another solution to the equation: y=11 and x=3 --> 3y+7x=33+21=55; and in this case, 7x < 3y => A & B together are insufficient => E is the answer Am I missing something here?

Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves?

Look at the matrix below:

Attachment:

Wolves.png

"There are more than 3 blue-eyed wolves with white coats" means that # of wolves which have blue eyes AND white coats is more than 3. The question asks whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3. Not sufficient on its own. (2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1. Not sufficient on its own.

(1)+(2) When taken together we get the flowing matrix:

Attachment:

Wolves (1)+(2).png

Notice that x and y must be integers (they represent some positive multiples for the ratios given in the statements).

So, we have that 3y+7x=55. After some trial and error we can find that this equation has only 3 positive integers solutions: y=2 and x=7 --> 3y+7x=6+49=55; y=9 and x=4 --> 3y+7x=27+28=55; y=16 and x=1 --> 3y+7x=48+7=55;

Now, the third solution (x=1) is not valid, since in this case # of wolves which have blue eyes AND white coats becomes 3x=3, so not more than 3 as given in the stem. As for the first two cases, in both of them 7x is more than 3y (49>6 and 28>27), so we can answer definite YES, to the question whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

Answer: C.

Hope it's clear.

There could be another solution to the equation: y=11 and x=3 --> 3y+7x=33+21=55; and in this case, 7x < 3y => A & B together are insufficient => E is the answer Am I missing something here?

Re: Each member of a pack of 55 wolves has either brown or blue [#permalink]

Show Tags

12 Sep 2015, 09:50

Bunuel wrote:

shadabkhaniet wrote:

Not able to understand the line " If there are more than 3 blue-eyed wolves with white coats"

Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves?

Look at the matrix below:

Attachment:

Wolves.png

"There are more than 3 blue-eyed wolves with white coats" means that # of wolves which have blue eyes AND white coats is more than 3. The question asks whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3. Not sufficient on its own. (2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1. Not sufficient on its own.

(1)+(2) When taken together we get the flowing matrix:

Attachment:

Wolves (1)+(2).png

Notice that x and y must be integers (they represent some positive multiples for the ratios given in the statements).

So, we have that 3y+7x=55. After some trial and error we can find that this equation has only 3 positive integers solutions: y=2 and x=7 --> 3y+7x=6+49=55; y=9 and x=4 --> 3y+7x=27+28=55; y=16 and x=1 --> 3y+7x=48+7=55;

Now, the third solution (x=1) is not valid, since in this case # of wolves which have blue eyes AND white coats becomes 3x=3, so not more than 3 as given in the stem. As for the first two cases, in both of them 7x is more than 3y (49>6 and 28>27), so we can answer definite YES, to the question whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

Answer: C.

Hope it's clear.

Hello Bunel , why should i see x only as integer , why can't it be fraction with denominator as 7 eg:18/7 ?

Not able to understand the line " If there are more than 3 blue-eyed wolves with white coats"

Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves?

Look at the matrix below:

Attachment:

Wolves.png

"There are more than 3 blue-eyed wolves with white coats" means that # of wolves which have blue eyes AND white coats is more than 3. The question asks whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3. Not sufficient on its own. (2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1. Not sufficient on its own.

(1)+(2) When taken together we get the flowing matrix:

Attachment:

Wolves (1)+(2).png

Notice that x and y must be integers (they represent some positive multiples for the ratios given in the statements).

So, we have that 3y+7x=55. After some trial and error we can find that this equation has only 3 positive integers solutions: y=2 and x=7 --> 3y+7x=6+49=55; y=9 and x=4 --> 3y+7x=27+28=55; y=16 and x=1 --> 3y+7x=48+7=55;

Now, the third solution (x=1) is not valid, since in this case # of wolves which have blue eyes AND white coats becomes 3x=3, so not more than 3 as given in the stem. As for the first two cases, in both of them 7x is more than 3y (49>6 and 28>27), so we can answer definite YES, to the question whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

Answer: C.

Hope it's clear.

Hello Bunel , why should i see x only as integer , why can't it be fraction with denominator as 7 eg:18/7 ?

Because if x = fraction , lets say =18/7, then 3x = NUMBER OF WOLVES with white coats = 54/7 = fraction . How can number of wolves be fraction? It does not make any sense to say we have 3/4 wolves or 22/7 wolves etc. Thus, x can only take integer values.
_________________

Forget conventional ways of solving math questions. In DS, Variable approach is the easiest and quickest way to find the answer without actually solving the problem. Remember equal number of variables and independent equations ensures a solution.

Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves?

(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3. (2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1.

Transforming the original condition and the question, we have the below 2by2 question which is a typical question in GMAT test.

There are 4 variables (a,b,c,d), 2 equations (a+b+c+d=55, b>3) and we need 2 more equations to match the number of variables and equations. Since there is 1 each in 1) and 2), there is high probability that C is the answer, and it actually turns out that C is the answer.

Attachments

GC DS LalaB Each member of a pack of (20150913).png [ 3.07 KiB | Viewed 2516 times ]

Re: Each member of a pack of 55 wolves has either brown or blue [#permalink]

Show Tags

23 Oct 2015, 01:25

Bunuel wrote:

AmoyV wrote:

Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves? (1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3. (2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1.

Merging topics.

Please refer to the discussion above.

If we do it by taking fractions, i.e. 3/7 X , 4/7 X , 2/3Y AND 1/3 Y, we do not get the same answer. Could you please advice?

Re: Each member of a pack of 55 wolves has either brown or blue [#permalink]

Show Tags

23 Oct 2015, 01:34

Bunuel wrote:

shadabkhaniet wrote:

Not able to understand the line " If there are more than 3 blue-eyed wolves with white coats"

Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves?

Look at the matrix below:

Attachment:

The attachment Wolves.png is no longer available

"There are more than 3 blue-eyed wolves with white coats" means that # of wolves which have blue eyes AND white coats is more than 3. The question asks whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3. Not sufficient on its own. (2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1. Not sufficient on its own.

(1)+(2) When taken together we get the flowing matrix:

Attachment:

The attachment Wolves (1)+(2).png is no longer available

Notice that x and y must be integers (they represent some positive multiples for the ratios given in the statements).

So, we have that 3y+7x=55. After some trial and error we can find that this equation has only 3 positive integers solutions: y=2 and x=7 --> 3y+7x=6+49=55; y=9 and x=4 --> 3y+7x=27+28=55; y=16 and x=1 --> 3y+7x=48+7=55;

Now, the third solution (x=1) is not valid, since in this case # of wolves which have blue eyes AND white coats becomes 3x=3, so not more than 3 as given in the stem. As for the first two cases, in both of them 7x is more than 3y (49>6 and 28>27), so we can answer definite YES, to the question whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

Answer: C.

Hope it's clear.

with fractions i get E as the answer

Attachments

20151023013242.jpg [ 114.11 KiB | Viewed 2321 times ]

Not able to understand the line " If there are more than 3 blue-eyed wolves with white coats"

Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves?

Look at the matrix below:

"There are more than 3 blue-eyed wolves with white coats" means that # of wolves which have blue eyes AND white coats is more than 3. The question asks whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3. Not sufficient on its own. (2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1. Not sufficient on its own.

(1)+(2) When taken together we get the flowing matrix:

Notice that x and y must be integers (they represent some positive multiples for the ratios given in the statements).

So, we have that 3y+7x=55. After some trial and error we can find that this equation has only 3 positive integers solutions: y=2 and x=7 --> 3y+7x=6+49=55; y=9 and x=4 --> 3y+7x=27+28=55; y=16 and x=1 --> 3y+7x=48+7=55;

Now, the third solution (x=1) is not valid, since in this case # of wolves which have blue eyes AND white coats becomes 3x=3, so not more than 3 as given in the stem. As for the first two cases, in both of them 7x is more than 3y (49>6 and 28>27), so we can answer definite YES, to the question whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

Answer: C.

Hope it's clear.

with fractions i get E as the answer

Can you please give TWO examples which satisfy both statements and the stem?
_________________

Re: Each member of a pack of 55 wolves has either brown or blue [#permalink]

Show Tags

21 Jan 2017, 08:34

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: Each member of a pack of 55 wolves has either brown or blue [#permalink]

Show Tags

23 Mar 2017, 16:47

Bunuel wrote:

shadabkhaniet wrote:

Not able to understand the line " If there are more than 3 blue-eyed wolves with white coats"

Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves?

Look at the matrix below:

"There are more than 3 blue-eyed wolves with white coats" means that # of wolves which have blue eyes AND white coats is more than 3. The question asks whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3. Not sufficient on its own. (2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1. Not sufficient on its own.

(1)+(2) When taken together we get the flowing matrix:

Notice that x and y must be integers (they represent some positive multiples for the ratios given in the statements).

So, we have that 3y+7x=55. After some trial and error we can find that this equation has only 3 positive integers solutions: y=2 and x=7 --> 3y+7x=6+49=55; y=9 and x=4 --> 3y+7x=27+28=55; y=16 and x=1 --> 3y+7x=48+7=55;

Now, the third solution (x=1) is not valid, since in this case # of wolves which have blue eyes AND white coats becomes 3x=3, so not more than 3 as given in the stem. As for the first two cases, in both of them 7x is more than 3y (49>6 and 28>27), so we can answer definite YES, to the question whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

Yes- if we combine both statements then we can inevitably solve for X- there is only one such value that can satisfy the ratios in this matrix- I plugged in numbers and serendipitously arrived at the answer- we know that, for example, the value of x must be somewhere between 4-20 and can thus plug in values.

gmatclubot

Re: Each member of a pack of 55 wolves has either brown or blue
[#permalink]
23 Mar 2017, 16:47

There’s something in Pacific North West that you cannot find anywhere else. The atmosphere and scenic nature are next to none, with mountains on one side and ocean on...

This month I got selected by Stanford GSB to be included in “Best & Brightest, Class of 2017” by Poets & Quants. Besides feeling honored for being part of...

Joe Navarro is an ex FBI agent who was a founding member of the FBI’s Behavioural Analysis Program. He was a body language expert who he used his ability to successfully...