GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 23 Jan 2019, 14:11

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Events & Promotions in January
PrevNext
SuMoTuWeThFrSa
303112345
6789101112
13141516171819
20212223242526
272829303112
Open Detailed Calendar
  • Key Strategies to Master GMAT SC

     January 26, 2019

     January 26, 2019

     07:00 AM PST

     09:00 AM PST

    Attend this webinar to learn how to leverage Meaning and Logic to solve the most challenging Sentence Correction Questions.
  • Free GMAT Number Properties Webinar

     January 27, 2019

     January 27, 2019

     07:00 AM PST

     09:00 AM PST

    Attend this webinar to learn a structured approach to solve 700+ Number Properties question in less than 2 minutes.

Each member of a pack of 55 wolves has either brown or blue

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

 
Senior Manager
Senior Manager
User avatar
Joined: 23 Oct 2010
Posts: 350
Location: Azerbaijan
Concentration: Finance
Schools: HEC '15 (A)
GMAT 1: 690 Q47 V38
GMAT ToolKit User
Each member of a pack of 55 wolves has either brown or blue  [#permalink]

Show Tags

New post 23 Oct 2011, 09:23
4
26
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

53% (02:19) correct 47% (02:27) wrong based on 737 sessions

HideShow timer Statistics

Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves?

(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3.
(2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1.

_________________

Happy are those who dream dreams and are ready to pay the price to make them come true

I am still on all gmat forums. msg me if you want to ask me smth

Most Helpful Expert Reply
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 52431
Each member of a pack of 55 wolves has either brown or blue  [#permalink]

Show Tags

New post 17 Mar 2012, 03:28
17
7
shadabkhaniet wrote:
Not able to understand the line " If there are more than 3 blue-eyed wolves with white coats"


Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves?

Look at the matrix below:

Image

"There are more than 3 blue-eyed wolves with white coats" means that # of wolves which have blue eyes AND white coats is more than 3. The question asks whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3. Not sufficient on its own.
(2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1. Not sufficient on its own.

(1)+(2) When taken together we get the flowing matrix:

Image

Notice that x and y must be integers (they represent some positive multiples for the ratios given in the statements).

So, we have that 3y+7x=55. After some trial and error we can find that this equation has only 3 positive integers solutions:
y=2 and x=7 --> 3y+7x=6+49=55;
y=9 and x=4 --> 3y+7x=27+28=55;
y=16 and x=1 --> 3y+7x=48+7=55;

Now, the third solution (x=1) is not valid, since in this case # of wolves which have blue eyes AND white coats becomes 3x=3, so not more than 3 as given in the stem. As for the first two cases, in both of them 7x is more than 3y (49>6 and 28>27), so we can answer definite YES, to the question whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

Answer: C.

Hope it's clear.

Attachment:
Wolves (1)+(2).png
Wolves (1)+(2).png [ 5.23 KiB | Viewed 13110 times ]

Attachment:
Wolves.png
Wolves.png [ 4.33 KiB | Viewed 13156 times ]

_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Most Helpful Community Reply
Manager
Manager
avatar
Joined: 18 Jun 2010
Posts: 89
Re: 55 wolves  [#permalink]

Show Tags

New post 23 Oct 2011, 10:39
4
1
+1 for C.

With given information, you can construct the following grid:


White Grey Total

Brown 2x x 3x

Blue 3y 4y 7y

Total 55

So, 3x+7y=55

Now the above combinations are satisfied only for x=2 and y=7 or x=9 and y=4.

In both cases 7y > 3x, i.e. Blue eyed wolves are greater than brown eyed wolves.

Hope that helps.
General Discussion
Manager
Manager
avatar
Status: I will be back!
Joined: 13 Feb 2012
Posts: 51
Location: India
Re: Each member of a pack of 55 wolves has either brown or blue  [#permalink]

Show Tags

New post 17 Mar 2012, 02:43
LalaB wrote:
Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there
are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed
wolves?
(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3.
(2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1.


Not able to understand the line " If there are more than 3 blue-eyed wolves with white coats"
_________________

--shadab
Gmat FlashCard For Anki

Manager
Manager
avatar
Status: I will be back!
Joined: 13 Feb 2012
Posts: 51
Location: India
Re: Each member of a pack of 55 wolves has either brown or blue  [#permalink]

Show Tags

New post 17 Mar 2012, 09:13
Bunuel wrote:
shadabkhaniet wrote:
Not able to understand the line " If there are more than 3 blue-eyed wolves with white coats"


Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves?

Look at the matrix below:
Attachment:
Wolves.png
"There are more than 3 blue-eyed wolves with white coats" means that # of wolves which have blue eyes AND white coats is more than 3. The question asks whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3. Not sufficient on its own.
(2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1. Not sufficient on its own.

(1)+(2) When taken together we get the flowing matrix:
Attachment:
Wolves (1)+(2).png
Notice that x and y must be integers (they represent some positive multiples for the ratios given in the statements).

So, we have that 3y+7x=55. After some trial and error we can find that this equation has only 3 positive integers solutions:
y=2 and x=7 --> 3y+7x=6+49=55;
y=9 and x=4 --> 3y+7x=27+28=55;
y=16 and x=1 --> 3y+7x=48+7=55;

Now, the third solution (x=1) is not valid, since in this case # of wolves which have blue eyes AND white coats becomes 3x=3, so not more than 3 as given in the stem. As for the first two cases, in both of them 7x is more than 3y (49>6 and 28>27), so we can answer definite YES, to the question whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

Answer: C.

Hope it's clear.


Thanks Bunnel, excellent explanation. +1 :)
_________________

--shadab
Gmat FlashCard For Anki

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 52431
Re: Each member of a pack of 55 wolves has either brown or blue  [#permalink]

Show Tags

New post 11 Jun 2013, 06:28
1
Bumping for review and further discussion*. Get a kudos point for an alternative solution!

*New project from GMAT Club!!! Check HERE

Theory on Overlapping Sets:
advanced-overlapping-sets-problems-144260.html
how-to-draw-a-venn-diagram-for-problems-98036.html

All DS Overlapping Sets Problems to practice: search.php?search_id=tag&tag_id=45
All PS Overlapping Sets Problems to practice: search.php?search_id=tag&tag_id=65

_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Intern
Intern
avatar
Joined: 15 Mar 2012
Posts: 44
Re: Each member of a pack of 55 wolves has either brown or blue  [#permalink]

Show Tags

New post 21 Aug 2013, 02:46
Bunuel wrote:
shadabkhaniet wrote:
Not able to understand the line " If there are more than 3 blue-eyed wolves with white coats"


Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves?

Look at the matrix below:
Attachment:
Wolves.png
"There are more than 3 blue-eyed wolves with white coats" means that # of wolves which have blue eyes AND white coats is more than 3. The question asks whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3. Not sufficient on its own.
(2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1. Not sufficient on its own.

(1)+(2) When taken together we get the flowing matrix:
Attachment:
Wolves (1)+(2).png
Notice that x and y must be integers (they represent some positive multiples for the ratios given in the statements).

So, we have that 3y+7x=55. After some trial and error we can find that this equation has only 3 positive integers solutions:
y=2 and x=7 --> 3y+7x=6+49=55;
y=9 and x=4 --> 3y+7x=27+28=55;
y=16 and x=1 --> 3y+7x=48+7=55;

Now, the third solution (x=1) is not valid, since in this case # of wolves which have blue eyes AND white coats becomes 3x=3, so not more than 3 as given in the stem. As for the first two cases, in both of them 7x is more than 3y (49>6 and 28>27), so we can answer definite YES, to the question whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

Answer: C.

Hope it's clear.


There could be another solution to the equation:
y=11 and x=3 --> 3y+7x=33+21=55; and in this case, 7x < 3y => A & B together are insufficient => E is the answer
Am I missing something here?
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 52431
Re: Each member of a pack of 55 wolves has either brown or blue  [#permalink]

Show Tags

New post 21 Aug 2013, 02:48
divineacclivity wrote:
Bunuel wrote:

Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves?

Look at the matrix below:
Attachment:
Wolves.png
"There are more than 3 blue-eyed wolves with white coats" means that # of wolves which have blue eyes AND white coats is more than 3. The question asks whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3. Not sufficient on its own.
(2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1. Not sufficient on its own.

(1)+(2) When taken together we get the flowing matrix:
Attachment:
Wolves (1)+(2).png
Notice that x and y must be integers (they represent some positive multiples for the ratios given in the statements).

So, we have that 3y+7x=55. After some trial and error we can find that this equation has only 3 positive integers solutions:
y=2 and x=7 --> 3y+7x=6+49=55;
y=9 and x=4 --> 3y+7x=27+28=55;
y=16 and x=1 --> 3y+7x=48+7=55;

Now, the third solution (x=1) is not valid, since in this case # of wolves which have blue eyes AND white coats becomes 3x=3, so not more than 3 as given in the stem. As for the first two cases, in both of them 7x is more than 3y (49>6 and 28>27), so we can answer definite YES, to the question whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

Answer: C.

Hope it's clear.


There could be another solution to the equation:
y=11 and x=3 --> 3y+7x=33+21=55; and in this case, 7x < 3y => A & B together are insufficient => E is the answer
Am I missing something here?


Arithmetic: 33+21=54 not 55.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Intern
Intern
avatar
Joined: 14 Apr 2015
Posts: 14
Re: Each member of a pack of 55 wolves has either brown or blue  [#permalink]

Show Tags

New post 12 Sep 2015, 08:50
Bunuel wrote:
shadabkhaniet wrote:
Not able to understand the line " If there are more than 3 blue-eyed wolves with white coats"


Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves?

Look at the matrix below:
Attachment:
Wolves.png
"There are more than 3 blue-eyed wolves with white coats" means that # of wolves which have blue eyes AND white coats is more than 3. The question asks whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3. Not sufficient on its own.
(2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1. Not sufficient on its own.

(1)+(2) When taken together we get the flowing matrix:
Attachment:
Wolves (1)+(2).png
Notice that x and y must be integers (they represent some positive multiples for the ratios given in the statements).

So, we have that 3y+7x=55. After some trial and error we can find that this equation has only 3 positive integers solutions:
y=2 and x=7 --> 3y+7x=6+49=55;
y=9 and x=4 --> 3y+7x=27+28=55;
y=16 and x=1 --> 3y+7x=48+7=55;

Now, the third solution (x=1) is not valid, since in this case # of wolves which have blue eyes AND white coats becomes 3x=3, so not more than 3 as given in the stem. As for the first two cases, in both of them 7x is more than 3y (49>6 and 28>27), so we can answer definite YES, to the question whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

Answer: C.

Hope it's clear.


Hello Bunel ,
why should i see x only as integer , why can't it be fraction with denominator as 7 eg:18/7 ?
CEO
CEO
avatar
S
Joined: 20 Mar 2014
Posts: 2636
Concentration: Finance, Strategy
Schools: Kellogg '18 (M)
GMAT 1: 750 Q49 V44
GPA: 3.7
WE: Engineering (Aerospace and Defense)
GMAT ToolKit User Premium Member Reviews Badge
Re: Each member of a pack of 55 wolves has either brown or blue  [#permalink]

Show Tags

New post 12 Sep 2015, 13:15
1
divya517 wrote:
Bunuel wrote:
shadabkhaniet wrote:
Not able to understand the line " If there are more than 3 blue-eyed wolves with white coats"


Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves?

Look at the matrix below:
Attachment:
Wolves.png
"There are more than 3 blue-eyed wolves with white coats" means that # of wolves which have blue eyes AND white coats is more than 3. The question asks whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3. Not sufficient on its own.
(2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1. Not sufficient on its own.

(1)+(2) When taken together we get the flowing matrix:
Attachment:
Wolves (1)+(2).png
Notice that x and y must be integers (they represent some positive multiples for the ratios given in the statements).

So, we have that 3y+7x=55. After some trial and error we can find that this equation has only 3 positive integers solutions:
y=2 and x=7 --> 3y+7x=6+49=55;
y=9 and x=4 --> 3y+7x=27+28=55;
y=16 and x=1 --> 3y+7x=48+7=55;

Now, the third solution (x=1) is not valid, since in this case # of wolves which have blue eyes AND white coats becomes 3x=3, so not more than 3 as given in the stem. As for the first two cases, in both of them 7x is more than 3y (49>6 and 28>27), so we can answer definite YES, to the question whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

Answer: C.

Hope it's clear.


Hello Bunel ,
why should i see x only as integer , why can't it be fraction with denominator as 7 eg:18/7 ?


Because if x = fraction , lets say =18/7, then 3x = NUMBER OF WOLVES with white coats = 54/7 = fraction . How can number of wolves be fraction? It does not make any sense to say we have 3/4 wolves or 22/7 wolves etc. Thus, x can only take integer values.
Math Revolution GMAT Instructor
User avatar
V
Joined: 16 Aug 2015
Posts: 6832
GMAT 1: 760 Q51 V42
GPA: 3.82
Premium Member
Each member of a pack of 55 wolves has either brown or blue  [#permalink]

Show Tags

New post 14 Sep 2015, 02:49
1
Forget conventional ways of solving math questions. In DS, Variable approach is the easiest and quickest way to find the answer without actually solving the problem.
Remember equal number of variables and independent equations ensures a solution.

Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves?

(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3.
(2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1.

Transforming the original condition and the question, we have the below 2by2 question which is a typical question in GMAT test.

There are 4 variables (a,b,c,d), 2 equations (a+b+c+d=55, b>3) and we need 2 more equations to match the number of variables and equations. Since there is 1 each in 1) and 2), there is high probability that C is the answer, and it actually turns out that C is the answer.
Attachments

GC DS LalaB Each member of a pack of (20150913).png
GC DS LalaB Each member of a pack of (20150913).png [ 3.07 KiB | Viewed 5308 times ]


_________________

MathRevolution: Finish GMAT Quant Section with 10 minutes to spare
The one-and-only World’s First Variable Approach for DS and IVY Approach for PS with ease, speed and accuracy.
"Only $149 for 3 month Online Course"
"Free Resources-30 day online access & Diagnostic Test"
"Unlimited Access to over 120 free video lessons - try it yourself"

Manager
Manager
avatar
B
Joined: 08 Oct 2015
Posts: 241
Re: Each member of a pack of 55 wolves has either brown or blue  [#permalink]

Show Tags

New post 23 Oct 2015, 00:25
Bunuel wrote:
AmoyV wrote:
Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there
are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed
wolves?
(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3.
(2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1.


Merging topics.

Please refer to the discussion above.


If we do it by taking fractions, i.e. 3/7 X , 4/7 X , 2/3Y AND 1/3 Y, we do not get the same answer. Could you please advice?

3x/7>3 --> 3x>21--x>7
Director
Director
avatar
S
Joined: 12 Nov 2016
Posts: 730
Location: United States
Schools: Yale '18
GMAT 1: 650 Q43 V37
GRE 1: Q157 V158
GPA: 2.66
Re: Each member of a pack of 55 wolves has either brown or blue  [#permalink]

Show Tags

New post 23 Mar 2017, 15:47
Bunuel wrote:
shadabkhaniet wrote:
Not able to understand the line " If there are more than 3 blue-eyed wolves with white coats"


Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves?

Look at the matrix below:

Image

"There are more than 3 blue-eyed wolves with white coats" means that # of wolves which have blue eyes AND white coats is more than 3. The question asks whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3. Not sufficient on its own.
(2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1. Not sufficient on its own.

(1)+(2) When taken together we get the flowing matrix:

Image

Notice that x and y must be integers (they represent some positive multiples for the ratios given in the statements).

So, we have that 3y+7x=55. After some trial and error we can find that this equation has only 3 positive integers solutions:
y=2 and x=7 --> 3y+7x=6+49=55;
y=9 and x=4 --> 3y+7x=27+28=55;
y=16 and x=1 --> 3y+7x=48+7=55;

Now, the third solution (x=1) is not valid, since in this case # of wolves which have blue eyes AND white coats becomes 3x=3, so not more than 3 as given in the stem. As for the first two cases, in both of them 7x is more than 3y (49>6 and 28>27), so we can answer definite YES, to the question whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

Answer: C.

Hope it's clear.

Attachment:
Wolves (1)+(2).png

Attachment:
Wolves.png


Yes- if we combine both statements then we can inevitably solve for X- there is only one such value that can satisfy the ratios in this matrix- I plugged in numbers and serendipitously arrived at the answer- we know that, for example, the value of x must be somewhere between 4-20 and can thus plug in values.
Intern
Intern
avatar
B
Joined: 25 Jul 2018
Posts: 2
Re: Each member of a pack of 55 wolves has either brown or blue  [#permalink]

Show Tags

New post 30 Jul 2018, 14:25
I feel like everyone here got it wrong.

C is not the solution.

They clearly state that the number of blue eyed wolfs with white coat is MORE than 3.
This means it can only be 4 and up.
If we use the proportions we will find out that the minimum number of Blue eyed wolfs possible is
4x3+4x4=28
55 - 28 = 27
The number of blue eyed wolfs will be higher than brown eyed no matter what. Hence A is sufficient.

Somehow people lost track of the question.

Or may be its just me who is crazy :roll:
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 52431
Re: Each member of a pack of 55 wolves has either brown or blue  [#permalink]

Show Tags

New post 30 Jul 2018, 20:15
nobilisrex wrote:
I feel like everyone here got it wrong.

C is not the solution.

They clearly state that the number of blue eyed wolfs with white coat is MORE than 3.
This means it can only be 4 and up.
If we use the proportions we will find out that the minimum number of Blue eyed wolfs possible is
4x3+4x4=28
55 - 28 = 27
The number of blue eyed wolfs will be higher than brown eyed no matter what. Hence A is sufficient.

Somehow people lost track of the question.

Or may be its just me who is crazy :roll:


For (1) we get that z + 7x = 55, where z is the number of brown-eyed wolves and 7x is the number of blue-eyed wolves. The question asks whether 7x > z. From z + 7x = 55, we can have that say 7x = 14 and z = 41 (answer NO) or 7x = 28 and z = 27 (answer YES).

C is correct.

P.S. You can check correct answer under the spoiler in the original post.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

CEO
CEO
User avatar
P
Status: GMATINSIGHT Tutor
Joined: 08 Jul 2010
Posts: 2726
Location: India
GMAT: INSIGHT
Schools: Darden '21
WE: Education (Education)
Reviews Badge
Re: Each member of a pack of 55 wolves has either brown or blue  [#permalink]

Show Tags

New post 10 Oct 2018, 21:14
LalaB wrote:
Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves?

(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3.
(2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1.


Please find below the video solution of this question. The solution comprises of two important take aways...
1) Never miss an information given in question
2) How to find solutions of linear equations


_________________

Prosper!!!
GMATinsight
Bhoopendra Singh and Dr.Sushma Jha
e-mail: info@GMATinsight.com I Call us : +91-9999687183 / 9891333772
Online One-on-One Skype based classes and Classroom Coaching in South and West Delhi
http://www.GMATinsight.com/testimonials.html

ACCESS FREE GMAT TESTS HERE:22 ONLINE FREE (FULL LENGTH) GMAT CAT (PRACTICE TESTS) LINK COLLECTION

GMAT Club Bot
Re: Each member of a pack of 55 wolves has either brown or blue &nbs [#permalink] 10 Oct 2018, 21:14
Display posts from previous: Sort by

Each member of a pack of 55 wolves has either brown or blue

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.