Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

69% (01:39) correct
31% (02:15) wrong based on 165 sessions

HideShow timer Statistics

In the figure above, each square is contained within the area of the larger square. The smallest square has a side length of 2 and the ratio of the area of the shaded square to the area of the smallest square is 5/2, what is the area of the largest square if the shaded square bisects each side of the largest square at its vertices?

Re: In the figure above, each square is contained within the area of the l [#permalink]

Show Tags

15 Jul 2015, 04:59

1

This post received KUDOS

Bunuel wrote:

In the figure above, each square is contained within the area of the larger square. The smallest square has a side length of 2 and the ratio of the area of the shaded square to the area of the smallest square is 5/2, what is the area of the largest square if the shaded square bisects each side of the largest square at its vertices?

In the figure above, each square is contained within the area of the larger square. The smallest square has a side length of 2 and the ratio of the area of the shaded square to the area of the smallest square is 5/2, what is the area of the largest square if the shaded square bisects each side of the largest square at its vertices?

area of the shaded square / the area of the smallest square = 5/2 i.e. area of the shaded square = (5/2)*4 = 10

Since the Shaded Square is bisecting the sides of Largest square therefore the Area of Largest Square will be twice the area of Shaded Square Area of Shaded Square = (1/2) Area of Biggest Square

i.e. Area of Biggest Square = 2 * (10) = 20 _________________

Prosper!!! GMATinsight Bhoopendra Singh and Dr.Sushma Jha e-mail: info@GMATinsight.com I Call us : +91-9999687183 / 9891333772 Online One-on-One Skype based classes and Classroom Coaching in South and West Delhi http://www.GMATinsight.com/testimonials.html

Re: In the figure above, each square is contained within the area of the l [#permalink]

Show Tags

17 Jul 2015, 16:58

Bunuel wrote:

In the figure above, each square is contained within the area of the larger square. The smallest square has a side length of 2 and the ratio of the area of the shaded square to the area of the smallest square is 5/2, what is the area of the largest square if the shaded square bisects each side of the largest square at its vertices?

In the figure above, each square is contained within the area of the larger square. The smallest square has a side length of 2 and the ratio of the area of the shaded square to the area of the smallest square is 5/2, what is the area of the largest square if the shaded square bisects each side of the largest square at its vertices?

The area of the smallest square must be equal to 2^2 = 4. Since the ratio of the area of the shaded square (it consists of the shaded region and the smallest square) to the area of the smallest square is 5/2, we can solve for the area of the shaded square by solving for A in the following equation: A/4 = 5/2 A = 4 × (5/2) A = 10

So, the area of the shaded square is equal to 10, and each side is equal to √10. Now, all we have to do is recognize that the triangles made at each corner of the large square where, two sides are equal to half the side length and the hypotenuse is equal to the edge length of the shaded square, are right triangles and to use the Pythagorean Theorem to solve for half the edge length. Let each side of the triangle be equal to x, then 2x^2 = 10, so x^2 = 5, and x = √5. This means that the entire side length of the larger square is twice the length of a side of that triangle, or 2√5. Finally, the area of a square is equal to a side squared, so the answer must be (2√5 )^2 = 20, or answer choice (A).
_________________

In the figure above, each square is contained within the area of the l [#permalink]

Show Tags

22 Jul 2015, 11:26

Bunuel wrote:

Bunuel wrote:

In the figure above, each square is contained within the area of the larger square. The smallest square has a side length of 2 and the ratio of the area of the shaded square to the area of the smallest square is 5/2, what is the area of the largest square if the shaded square bisects each side of the largest square at its vertices?

The area of the smallest square must be equal to 2^2 = 4. Since the ratio of the area of the shaded square (it consists of the shaded region and the smallest square) to the area of the smallest square is 5/2, we can solve for the area of the shaded square by solving for A in the following equation: A/4 = 5/2 A = 4 × (5/2) A = 10

So, the area of the shaded square is equal to 10, and each side is equal to √10. Now, all we have to do is recognize that the triangles made at each corner of the large square where, two sides are equal to half the side length and the hypotenuse is equal to the edge length of the shaded square, are right triangles and to use the Pythagorean Theorem to solve for half the edge length. Let each side of the triangle be equal to x, then 2x^2 = 10, so x^2 = 5, and x = √5. This means that the entire side length of the larger square is twice the length of a side of that triangle, or 2√5. Finally, the area of a square is equal to a side squared, so the answer must be (2√5 )^2 = 20, or answer choice (A).

Hello Bunuel , Can i not take as area of shaded region + area of small square = 10+4 = 14 so area of square (shaded region + small square)=14 so its side is root(14) since this particular square bisects the larger square So area of larger square =2(area of this square)= 2*14=28 Is this not correct ? problem is i could not understand how area of shaded region can be interpreted to get the side

Re: In the figure above, each square is contained within the area of the l [#permalink]

Show Tags

30 Oct 2015, 07:50

Hi I have the Same Problem with this one. Since the area of These shaded Square is 10 you have to add the small Square to get the whole area. Thats 14 then and one side is the suare Root of 14. Why is that wrong?

In the figure above, each square is contained within the area of the larger square. The smallest square has a side length of 2 and the ratio of the area of the shaded square to the area of the smallest square is 5/2, what is the area of the largest square if the shaded square bisects each side of the largest square at its vertices?

The area of the small square is 4. If the area of the shaded square has a a ratio of 5/2 that of the small square, then its area is 10. We can therefore determine each side of the shaded square has a length of \sqrt{10} If each side of the shaded squre bisects the side of the large square, the triangle created by side of the shaded square and 1/2 each side of the large square is a 45:45:90 suqare with the shaded square's side as the hypotenuse. The proportion of the sides of a 45:45:90 triangle are 1:1:\sqrt{2} and, in this case the hypotenuse is \sqrt{10}, so the sides of the large square are each 2\sqrt{5}. The area, therefore, is 2\sqrt{5} squared, or 20.

Re: In the figure above, each square is contained within the area of the l [#permalink]

Show Tags

22 Jan 2017, 13:53

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: In the figure above, each square is contained within the area of the l [#permalink]

Show Tags

15 Sep 2017, 08:58

Bunuel wrote:

In the figure above, each square is contained within the area of the larger square. The smallest square has a side length of 2 and the ratio of the area of the shaded square to the area of the smallest square is 5/2, what is the area of the largest square if the shaded square bisects each side of the largest square at its vertices?