Last visit was: 19 Nov 2025, 08:15 It is currently 19 Nov 2025, 08:15
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
Sub 505 Level|   Exponents|   Inequalities|                        
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,389
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,389
Kudos: 778,264
 [61]
4
Kudos
Add Kudos
55
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,389
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,389
Kudos: 778,264
 [21]
14
Kudos
Add Kudos
7
Bookmarks
Bookmark this Post
General Discussion
User avatar
cyberjadugar
Joined: 29 Mar 2012
Last visit: 28 May 2024
Posts: 265
Own Kudos:
1,755
 [1]
Given Kudos: 23
Location: India
GMAT 1: 640 Q50 V26
GMAT 2: 660 Q50 V28
GMAT 3: 730 Q50 V38
GMAT 3: 730 Q50 V38
Posts: 265
Kudos: 1,755
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,389
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,389
Kudos: 778,264
Kudos
Add Kudos
Bookmarks
Bookmark this Post
SOLUTION

Is \(\frac{5^{x+2}}{25}<1\) ?

Is \(\frac{5^{x+2}}{25} <1\)? --> is \(\frac{5^{x+2}}{5^2}<1\)? --> is \(5^x<1\)? --> is \(x<0\)?

Or: is \(\frac{5^{x+2}}{25} <1\)? --> is \(5^{x+2}<5^2\)? --> is \(x+2<2\)? --> is \(x<0\)?

(1) \(5^x < 1\) --> \(x<0\). Sufficient.

(2) \(x < 0\). Directly answers the question. Sufficient.

Answer: D.
User avatar
bgpower
Joined: 03 Aug 2011
Last visit: 14 Mar 2017
Posts: 267
Own Kudos:
Given Kudos: 916
Concentration: Strategy, Finance
GMAT 1: 640 Q44 V34
GMAT 2: 700 Q42 V44
GMAT 3: 680 Q44 V39
GMAT 4: 740 Q49 V41
GPA: 3.7
WE:Project Management (Energy)
Products:
Kudos
Add Kudos
Bookmarks
Bookmark this Post
What would happen if we would have \(x=\frac{-1}{10}\)?

Am I correct that \(5^\frac{-1}{10} = \frac{1}{5^(1/10)} = \frac{1}{\sqrt[10]{5^1}}\), but the denominator would still be always greater than the numerator?

Thank you!
User avatar
Harley1980
User avatar
Retired Moderator
Joined: 06 Jul 2014
Last visit: 14 Jun 2024
Posts: 1,001
Own Kudos:
6,688
 [2]
Given Kudos: 178
Location: Ukraine
Concentration: Entrepreneurship, Technology
GMAT 1: 660 Q48 V33
GMAT 2: 740 Q50 V40
GMAT 2: 740 Q50 V40
Posts: 1,001
Kudos: 6,688
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
bgpower
What would happen if we would have \(x=\frac{-1}{10}\)?

Am I correct that \(5^\frac{-1}{10} = \frac{1}{5^(1/10)} = \frac{1}{\sqrt[10]{5^1}}\), but the denominator would still be always greater than the numerator?

Thank you!

Hello bgpower

You are correct that \(5^\frac{-1}{10} = \frac{1}{5^(1/10)} = \frac{1}{\sqrt[10]{5^1}}\)

But this statement "the denominator would still be always greater than the numerator?" is suspicious.
If you talk about this fraction: \(\frac{1}{\sqrt[10]{5^1}}\) than you are wrong because in this fraction denominator \(\sqrt[10]{5^1}\) is less than nominator \(1\)
If you talk about fraction from initial task then you are right denominator \(25\) is bigger than nominator \(\sqrt[10]{5^1}\)
User avatar
bgpower
Joined: 03 Aug 2011
Last visit: 14 Mar 2017
Posts: 267
Own Kudos:
Given Kudos: 916
Concentration: Strategy, Finance
GMAT 1: 640 Q44 V34
GMAT 2: 700 Q42 V44
GMAT 3: 680 Q44 V39
GMAT 4: 740 Q49 V41
GPA: 3.7
WE:Project Management (Energy)
Products:
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi, Thanks for your reply!

I was actually talking about: \(\frac{1}{\sqrt[10]{5^1}}\). So in this case I am wrong, as the numerator of 1 would clearly be greater than the denominator. But doesn't this mean that \(5^x\) is not always <1. The question does not define x to be positive and as shown above if x is a negative fraction (as \(-\frac{1}{10}\)) then the result is greater than 1.

Thanks for the clarification!
User avatar
Harley1980
User avatar
Retired Moderator
Joined: 06 Jul 2014
Last visit: 14 Jun 2024
Posts: 1,001
Own Kudos:
6,688
 [3]
Given Kudos: 178
Location: Ukraine
Concentration: Entrepreneurship, Technology
GMAT 1: 660 Q48 V33
GMAT 2: 740 Q50 V40
GMAT 2: 740 Q50 V40
Posts: 1,001
Kudos: 6,688
 [3]
3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
bgpower
Hi, Thanks for your reply!

I was actually talking about: \(\frac{1}{\sqrt[10]{5^1}}\). So in this case I am wrong, as the numerator of 1 would clearly be greater than the denominator. But doesn't this mean that \(5^x\) is not always <1. The question does not define x to be positive and as shown above if x is a negative fraction (as \(-\frac{1}{10}\)) then the result is greater than 1.

Thanks for the clarification!

I think you leave out last step of task (dividing on 25) and this confuse you.

You are absolutely right that \(\frac{1}{\sqrt[10]{5^1}}\) greater than 1
but if we divide this result on 25 (as tasks asks) then result will be less than 1

----

This task can be solved in much faster way:

Tasks asks if \(\frac{5^{(x+2)}}{25}\) will be less than 1

Let's transform this equation to \(5^{(x+2)} < 25\) --> \(5^{(x+2)} < 5^2\) from this view we see that this equation will be true if x will be less than 0

1) \(5^x<1\) this is possible only if \(x < 0\) - Sufficient
2) \(x<0\) - this is exactly what we seek - Sufficient

Sometimes picking numbers is good but in this case algebraic way is much faster and at the end you will not have any hesitations in answer
User avatar
bgpower
Joined: 03 Aug 2011
Last visit: 14 Mar 2017
Posts: 267
Own Kudos:
118
 [2]
Given Kudos: 916
Concentration: Strategy, Finance
GMAT 1: 640 Q44 V34
GMAT 2: 700 Q42 V44
GMAT 3: 680 Q44 V39
GMAT 4: 740 Q49 V41
GPA: 3.7
WE:Project Management (Energy)
Products:
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I actually did it the following way:

\(\frac{5^(x+2)}{25}<1\)
\(\frac{(5^x)(5^2)}{5^2}<1\) => Here you can basically cancel out \(5^2\) and are left with \(5^x<1\)

Here we come to the point we have already discussed.

(1) is clearly SUFFICIENT as it says exactly \(5^x<1\).
(2) I thought (2) is NOT SUFFICIENT as for negative fractions (think \(-\frac{1}{10}\)), IMO this does NOT hold true, while for other negative values it does.
avatar
OptimusPrepJanielle
Joined: 06 Nov 2014
Last visit: 08 Sep 2017
Posts: 1,779
Own Kudos:
Given Kudos: 23
Expert
Expert reply
Posts: 1,779
Kudos: 1,483
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Is (5^x+2)/25<1 ?
Multiply both sides by 25 to yield 5^x+2>25. Rewrite 25 so that we have 5 as a base on both sides, so we want to know if 5^x+2> 5^2. The question is now is x+2>2. This will be true if x is negative.
(1) 5^x<1
1 can be rewritten so as 5^0 so as to give the same base. x<0 Sufficient.
(2) x<0
This is the same information as we derived from Statement 1 (x is negative). Therefore it is also sufficient.

D
avatar
OptimusPrepJanielle
Joined: 06 Nov 2014
Last visit: 08 Sep 2017
Posts: 1,779
Own Kudos:
1,483
 [1]
Given Kudos: 23
Expert
Expert reply
Posts: 1,779
Kudos: 1,483
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Is (5^x+2)/25<1 ?
Multiply both sides by 25 to yield 5^x+2<25. Rewrite 25 so that we have 5 as a base on both sides, so we want to know if 5^x+2< 5^2. The question is now is x+2<2. This will be true if x is negative.
(1) 5^x<1
1 can be rewritten so as 5^0 so as to give the same base. x<0 Sufficient.
(2) x<0
This is the same information as we derived from Statement 1 (x is negative). Therefore it is also sufficient.

D
User avatar
bgpower
Joined: 03 Aug 2011
Last visit: 14 Mar 2017
Posts: 267
Own Kudos:
Given Kudos: 916
Concentration: Strategy, Finance
GMAT 1: 640 Q44 V34
GMAT 2: 700 Q42 V44
GMAT 3: 680 Q44 V39
GMAT 4: 740 Q49 V41
GPA: 3.7
WE:Project Management (Energy)
Products:
Kudos
Add Kudos
Bookmarks
Bookmark this Post
OptimusPrepJanielle

Thank you for your explanation! I fully get your explanation. Nevertheless, I still don't see anyone addressing my questions, which basically asks what happens when x is a negative fraction as \(-\frac{1}{10}\)? I may be the one with an error here, but please explain it to me.

Thanks!
avatar
OptimusPrepJanielle
Joined: 06 Nov 2014
Last visit: 08 Sep 2017
Posts: 1,779
Own Kudos:
1,483
 [1]
Given Kudos: 23
Expert
Expert reply
Posts: 1,779
Kudos: 1,483
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi bgpower,

The issue is whether or not x is negative. If x is a negative fraction such as -1/10 the expression should still hold true. I hope that helps.
User avatar
Harley1980
User avatar
Retired Moderator
Joined: 06 Jul 2014
Last visit: 14 Jun 2024
Posts: 1,001
Own Kudos:
6,688
 [1]
Given Kudos: 178
Location: Ukraine
Concentration: Entrepreneurship, Technology
GMAT 1: 660 Q48 V33
GMAT 2: 740 Q50 V40
GMAT 2: 740 Q50 V40
Posts: 1,001
Kudos: 6,688
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
bgpower
OptimusPrepJanielle

Thank you for your explanation! I fully get your explanation. Nevertheless, I still don't see anyone addressing my questions, which basically asks what happens when x is a negative fraction as \(-\frac{1}{10}\)? I may be the one with an error here, but please explain it to me.

Thanks!

Hello bgpower

When x = -1/10 then \(5^{-1/10+2} = 5^{19/10}\)
We need to check whether this \(5^{19/10}\) less than \(5^2\)
19/10 less than 2
so \(5^{x+2} < 5^2\)
User avatar
Witchcrafts
Joined: 21 Mar 2013
Last visit: 26 Oct 2016
Posts: 8
Own Kudos:
Given Kudos: 14
Posts: 8
Kudos: 1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
For\frac{\(5^(x+2)[}{m]/25} < 1, the numerator will have to be less than 25. \\
\\
[m]5^(x+2)\) < 25?

For \(5^(x+2)\) < 25, x will have to be less than 0.
x<0?

So statement B is straightforward. I am bungled up on the first statement.

\(5^x\) <1

Since \(5^0\) = 1, x != 0.
Also, \(5^1\) = 5 and hence x<1.

But what about x being a fraction i.e. 0<x<1?

If that is the case then Statement 1 is no sufficient.

Please tell me where I am wrong.
User avatar
Harley1980
User avatar
Retired Moderator
Joined: 06 Jul 2014
Last visit: 14 Jun 2024
Posts: 1,001
Own Kudos:
Given Kudos: 178
Location: Ukraine
Concentration: Entrepreneurship, Technology
GMAT 1: 660 Q48 V33
GMAT 2: 740 Q50 V40
GMAT 2: 740 Q50 V40
Posts: 1,001
Kudos: 6,688
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Witchcrafts
For\frac{\(5^(x+2)[}{m]/25} < 1, the numerator will have to be less than 25. \\
\\
[m]5^(x+2)\) < 25?

For \(5^(x+2)\) < 25, x will have to be less than 0.
x<0?

So statement B is straightforward. I am bungled up on the first statement.

\(5^x\) <1

Since \(5^0\) = 1, x != 0.
Also, \(5^1\) = 5 and hence x<1.

But what about x being a fraction i.e. 0<x<1?

If that is the case then Statement 1 is no sufficient.

Please tell me where I am wrong.

Hello Witchcrafts
if x is fraction than it will be some root from 5 and result of any root will be always more than 1 so x can't be a fraction

if \(x = \frac{1}{2}\) then \(5^x = \sqrt{5}\)
User avatar
Witchcrafts
Joined: 21 Mar 2013
Last visit: 26 Oct 2016
Posts: 8
Own Kudos:
Given Kudos: 14
Posts: 8
Kudos: 1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Thanks Harley. I figured that after I posted the question :-)

The rule is:
If a x and y are positive integers then
y^(1/x) >1
User avatar
salopian
Joined: 12 Apr 2020
Last visit: 11 Apr 2021
Posts: 7
Own Kudos:
Given Kudos: 44
Posts: 7
Kudos: 7
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
SOLUTION

Is \(\frac{5^{x+2}}{25}<1\) ?

Is \(\frac{5^{x+2}}{25} <1\)? --> is \(\frac{5^{x+2}}{5^2}<1\)? --> is \(5^x<1\)? --> is \(x<0\)?

Or: is \(\frac{5^{x+2}}{25} <1\)? --> is \(5^{x+2}<5^2\)? --> is \(x+2<2\)? --> is \(x<0\)?

(1) \(5^x < 1\) --> \(x<0\). Sufficient.

(2) \(x < 0\). Directly answers the question. Sufficient.

Answer: D.

Hi - how did you go from 5^x<1--> x<0?

Why would it not be x<1? Because is 1 also not just 1^1, thus 5^x<1^1 --> x<1?

Many thanks :)
avatar
Hyord
Joined: 14 Jan 2020
Last visit: 23 Jul 2020
Posts: 1
Posts: 1
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi, for (1). 5^x < 1

Can we modify this to be 5^x < 5^0, then solve using the equal exponents theorem to say the equation is now x < 0?
Kudos
Add Kudos
Bookmarks
Bookmark this Post
bgpower
What would happen if we would have \(x=\frac{-1}{10}\)?

Am I correct that \(5^\frac{-1}{10} = \frac{1}{5^(1/10)} = \frac{1}{\sqrt[10]{5^1}}\), but the denominator would still be always greater than the numerator?

Thank you!

5^(1/10) = 1.17461894309. Therefore yes, the denominator would be greater than the numerator if even it is a negative fractional value.
 1   2   
Moderators:
Math Expert
105389 posts
496 posts