Last visit was: 14 Dec 2024, 21:32 It is currently 14 Dec 2024, 21:32
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
niks18
User avatar
Retired Moderator
Joined: 25 Feb 2013
Last visit: 30 Jun 2021
Posts: 887
Own Kudos:
1,620
 []
Given Kudos: 54
Location: India
GPA: 3.82
Products:
Posts: 887
Kudos: 1,620
 []
Kudos
Add Kudos
12
Bookmarks
Bookmark this Post
avatar
Gatt33
Joined: 31 Oct 2016
Last visit: 06 Jan 2020
Posts: 7
Own Kudos:
Given Kudos: 37
Posts: 7
Kudos: 1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
niks18
User avatar
Retired Moderator
Joined: 25 Feb 2013
Last visit: 30 Jun 2021
Posts: 887
Own Kudos:
Given Kudos: 54
Location: India
GPA: 3.82
Products:
Posts: 887
Kudos: 1,620
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
ManishKM1
User avatar
Current Student
Joined: 22 Apr 2017
Last visit: 03 Jan 2019
Posts: 83
Own Kudos:
Given Kudos: 75
Location: India
GMAT 1: 620 Q47 V29
GMAT 2: 630 Q49 V26
GMAT 3: 690 Q48 V35
GPA: 3.7
GMAT 3: 690 Q48 V35
Posts: 83
Kudos: 295
Kudos
Add Kudos
Bookmarks
Bookmark this Post
niks18
Gatt33
A clearly tells that the number of digits in the code was a single digit prime number which, when multiplied by another prime number, returned an even number greater than 10. Only case 2*7 because 2*3, 2*5 are both =/< 10 so only left with one possibility.

B on the other hand tells us that n<14 and n=6k+1. This gives us two possibilities: 7 and 13.

The question is asking to find the minimum number of trials before he can be certain to succeed and if I don't get into the details of other calculations. this is good enough to rule out B and keep A.

IMO - A

Hi Gatt33
Can you provide a more detailed explanation for Option A as to how we can use Statement A to get the minimum value or why not Option E because in the GMAT we will not have the luxury to know the OA :-)

Hi niks18,
IMO, from A, we get that the length of code is 7 digits & digit 9 is not repeated in the code. So we can find out the total number of trials possible. As far as minimum number of trials is concerned, it could be anything between 1 & total combination possible.

HiBunuel, could you kindly shed some light on it.

Regards
User avatar
niks18
User avatar
Retired Moderator
Joined: 25 Feb 2013
Last visit: 30 Jun 2021
Posts: 887
Own Kudos:
1,620
 []
Given Kudos: 54
Location: India
GPA: 3.82
Products:
Posts: 887
Kudos: 1,620
 []
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
niks18
Mr. Bond has forgotten his \(n\) digit locker code. He remembers that the first three digits are either \(853\) or \(847\) and there was a number that appeared only once in the code. If Mr. Bond were to use a trial and error process to open his locker, what is the minimum number of trials he has to make before he can be certain to succeed?

OE

To solve this Permutation problem we need three values-
a) the value of n = no of digit in the locker code
b) the digit that appeared only once
c) whether the locker code was ODD or EVEN because permutation will get impacted based on even/odd combination as we have one number that can be used only once

Statement 1:
Quote:
Mr. Bond recalled that the number of digits in the code was a single digit prime number which, when multiplied by another prime number, returned an even number greater than \(10\)
this implies that \(n=7\) because \(7*2=14>10\)

Quote:
He also recalled that the digit that appeared only once was square of a single digit odd prime number
this implies that the digit that appeared only once was \(9\)=\(3^2\)

Quote:
and the locker code was not a multiple of two.
this implies that the code is ODD

Thus we got all the information we were looking for. Hence Sufficient. Note: this is a DS problem hence we don't need an exact answer here.

Statement 2:
Quote:
The locker code is odd, and the number nine appears once in the code. \(n<14\) and \(n=6k+1\), where \(k\) is any integer.
From this we get the information that the code is ODD and 9 appears only once, but the value of \(n\) cannot be determined,
if \(k=1\), \(n=7\) & if \(k=2\), \(n=13\). Thus two values of n are possible. Hence Insufficient

Option A
---------------------------------------------------------------------------------------------------------------------------
FYI - calculation for number of trials

There are two possible cases. The number \(9\) comes at the end, or it comes at position 4th, 5th, or 6th.

For the first case, the number would look like: \(853 - - - 9\) or \(847 - - - 9\)

In both these cases, the blanks can be occupied by any of the available \(9\) digits (0, 1, 2, ..., 8).

Thus, total possible numbers would be \(2 × (9 × 9 × 9) = 1458\).

For the second case, the number \(9\) can occupy any of the given position 4th, 5th, or 6th, and there shall be an odd number at position 7th.

Thus, the total number of ways shall be \(2[3(9 × 9 × 4)] = 1944\). Hence, answer is \(1458+1944=3402\).
Moderator:
Math Expert
97877 posts