Last visit was: 20 Nov 2025, 04:24 It is currently 20 Nov 2025, 04:24
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
avatar
Anasthaesium
Joined: 04 Apr 2010
Last visit: 16 Jan 2020
Posts: 168
Own Kudos:
132
 [37]
Given Kudos: 13
Status:Taking heavily leveraged but calculated risks at all times
Concentration: Entrepreneurship, Finance
GMAT Date: 01-31-2012
Posts: 168
Kudos: 132
 [37]
6
Kudos
Add Kudos
31
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,412
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,412
Kudos: 778,481
 [11]
7
Kudos
Add Kudos
4
Bookmarks
Bookmark this Post
avatar
avenkatesh007
Joined: 24 Oct 2011
Last visit: 18 Oct 2014
Posts: 78
Own Kudos:
26
 [7]
Given Kudos: 27
Location: India
Concentration: General Management, International Business
GMAT Date: 11-29-2011
GPA: 3.5
WE:Web Development (Computer Software)
Posts: 78
Kudos: 26
 [7]
6
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
General Discussion
User avatar
IanStewart
User avatar
GMAT Tutor
Joined: 24 Jun 2008
Last visit: 19 Nov 2025
Posts: 4,145
Own Kudos:
Given Kudos: 99
Expert
Expert reply
Posts: 4,145
Kudos: 10,990
Kudos
Add Kudos
Bookmarks
Bookmark this Post
avenkatesh007
divide series in rational and irrational no's since sum of rational is always rational and irrational is always irrational

That's true in this question, but not in general. The sum of two rational numbers is always rational, but the sum of two irrational numbers does not need to be irrational. For example, √2 and 2 - √2 are both irrational, but their sum is 2, a rational number. That's not the kind of thing the GMAT ever tests, however.
avatar
pavanpuneet
Joined: 26 Dec 2011
Last visit: 13 Feb 2014
Posts: 75
Own Kudos:
Given Kudos: 17
Posts: 75
Kudos: 139
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I did not understand the above explanation. Can someone please explain?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,412
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,412
Kudos: 778,481
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bumping for review and further discussion*. Get a kudos point for an alternative solution!

*New project from GMAT Club!!! Check HERE
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
77,002
 [5]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,002
 [5]
1
Kudos
Add Kudos
4
Bookmarks
Bookmark this Post
Anasthaesium
How many terms of the series r 3^(1/2) + 3 + 3*(3^(1/2)) +.... will form 120 + 121*(3^(1/2))?

A. 3
B. 4
C. 5
D. 6
E. 9


In a series question, it is always a good idea to write the first few terms to figure out what the series looks like:

r = \(\sqrt{3} + 3 + 3\sqrt{3} + 9 + 9\sqrt{3} + 27 + 27\sqrt{3} + ....\)

Sum of first 2 terms\(= 3 + \sqrt{3}\)
Sum of first 3 terms \(= 3 + (\sqrt{3} + 3\sqrt{3})\)
Sum of first 4 terms\(= (3+9) + 4\sqrt{3}\)
Sum of first 5 terms \(= 12 + (4 + 9)\sqrt{3}\)
etc

You want a sum of \(120 + 121\sqrt{3}\)

You will obtain 120 by adding 3 + 9 + 27 + 81 (4 terms) and \(121\sqrt{3}\) by adding \((1 + 3 + 9 + 27 + 81)\sqrt{3}\) (i.e. 5 terms)

So you need to add a total of 9 terms.
User avatar
ziko
Joined: 28 Feb 2012
Last visit: 29 Jan 2014
Posts: 91
Own Kudos:
Given Kudos: 17
Concentration: Strategy, International Business
GPA: 3.9
WE:Marketing (Other)
Posts: 91
Kudos: 217
Kudos
Add Kudos
Bookmarks
Bookmark this Post
My method is not very sophisticated and most probably not the best but in some cases it works.
The most crucial part here is to understand the question. Basically we have a sequesnce \sqrt{3}+3+3\sqrt{3}+ .... which is the same as: \sqrt{3}+\sqrt{3}*\sqrt{3}+\sqrt{3}*\sqrt{3}*\sqrt{3}+\sqrt{3}*\sqrt{3}*\sqrt{3}*\sqrt{3}+....

As it could be seen each time next term is multiplied by \sqrt{3}.

Now the questions asks us to find how many numbers this sequence should consists of in order to be equal of 120 + 121*\sqrt{3}.

What i did, i have just tried to make the calculation easier and tried to simplify the 120 + 121*\sqrt{3}=40*\sqrt{3}*\sqrt{3}+121*\sqrt{3}=\sqrt{3}(40\sqrt{3}+121)

Now go back to our sequence, if we take the common \sqrt{3} out of the brackets we have \sqrt{3}(1+\sqrt{3}+3+3\sqrt{3}+9+9\sqrt{3}) ---> \sqrt{3}(13+13\sqrt{3}) This is the sum of 6 terms in the sequence, which is clearly less than \sqrt{3}(40\sqrt{3}+121). We can go and check whether 9 (next possible choice) will fit, but considering that 9 is the only choice left it should be it. The answer is E.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,412
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,412
Kudos: 778,481
Kudos
Add Kudos
Bookmarks
Bookmark this Post
ziko
My method is not very sophisticated and most probably not the best but in some cases it works.
The most crucial part here is to understand the question. Basically we have a sequesnce \sqrt{3}+3+3\sqrt{3}+ .... which is the same as: \sqrt{3}+\sqrt{3}*\sqrt{3}+\sqrt{3}*\sqrt{3}*\sqrt{3}+\sqrt{3}*\sqrt{3}*\sqrt{3}*\sqrt{3}+....

As it could be seen each time next term is multiplied by \sqrt{3}.

Now the questions asks us to find how many numbers this sequence should consists of in order to be equal of 120 + 121*\sqrt{3}.

What i did, i have just tried to make the calculation easier and tried to simplify the 120 + 121*\sqrt{3}=40*\sqrt{3}*\sqrt{3}+121*\sqrt{3}=\sqrt{3}(40\sqrt{3}+121)

Now go back to our sequence, if we take the common \sqrt{3} out of the brackets we have \sqrt{3}(1+\sqrt{3}+3+3\sqrt{3}+9+9\sqrt{3}) ---> \sqrt{3}(13+13\sqrt{3}) This is the sum of 6 terms in the sequence, which is clearly less than \sqrt{3}(40\sqrt{3}+121). We can go and check whether 9 (next possible choice) will fit, but considering that 9 is the only choice left it should be it. The answer is E.

Please read this post: rules-for-posting-please-read-this-before-posting-133935.html#p1096628 (ptess m button for formulas).
User avatar
catalysis
Joined: 26 May 2012
Last visit: 03 Jan 2017
Posts: 39
Own Kudos:
Given Kudos: 11
Concentration: Marketing, Statistics
Posts: 39
Kudos: 33
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Is the original question missing a "+9" in the portion describing the sequence? It was hard to know what the series would with just 3 terms (as the question currently is). For example, if we only know 3^(1/2), 3, 3*3^(1/2), one could interpret that the series is defined as every input starting from the 3rd is the product of the previous 2. Hope this makes sense. Please edit the question stem because I see a +9 in the answer explanations but not the question itself.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,412
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,412
Kudos: 778,481
Kudos
Add Kudos
Bookmarks
Bookmark this Post
catalysis
Is the original question missing a "+9" in the portion describing the sequence? It was hard to know what the series would with just 3 terms (as the question currently is). For example, if we only know 3^(1/2), 3, 3*3^(1/2), one could interpret that the series is defined as every input starting from the 3rd is the product of the previous 2. Hope this makes sense. Please edit the question stem because I see a +9 in the answer explanations but not the question itself.
________
Edited. Thank you.
avatar
sagnik2422
Joined: 20 May 2014
Last visit: 20 Jan 2015
Posts: 27
Own Kudos:
Given Kudos: 1
Posts: 27
Kudos: 20
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
Anasthaesium
How many terms of the series r 3^(1/2) + 3 + 3*(3^(1/2)) +.... will form 120 + 121*(3^(1/2))?

A. 3
B. 4
C. 5
D. 6
E. 9

We have a following sequence: \(\sqrt{3}\), \(3\), \(3\sqrt{3}\), \(9\), ...

Notice that this sequence is a geometric progression with first term equal to \(\sqrt{3}\) and common ratio also equal to \(\sqrt{3}\).

The question asks: the sum of how many terms of this sequence adds up to \(120+121\sqrt{3}\).

The sum of the first \(n\) terms of geometric progression is given by: \(sum=\frac{b*(r^{n}-1)}{r-1}\), (where \(b\) is the first term, \(n\) # of terms and \(r\) is a common ratio \(\neq{1}\)).

So, \(\frac{\sqrt{3}(\sqrt{3}^n-1)}{\sqrt{3}-1}=120+121\sqrt{3}\) --> \(\sqrt{3}(\sqrt{3}^n-1)=120\sqrt{3}+121*3-120-121\sqrt{3}\) --> \(\sqrt{3}*\sqrt{3}^n-\sqrt{3}=243-\sqrt{3}\) --> \(\sqrt{3}*\sqrt{3}^n=243\) --> \(3^{\frac{1+n}{2}}=3^5\) --> \(\frac{1+n}{2}=5\) --> \(n=9\).

Answer: E.

Shortcut solution:
Alternately you can spot that every second term (which also form a geometric progression), 3, 9, 27, ... should add up to 120: \(\frac{3(3^k-1)}{3-1}=120\) --> \(3^k-1=80\) --> \(3^k=81\) --> \(k=4\), so the number of terms must be either \(2k=8\) (if there are equal number of irrational and rational terms) or \(2k+1=9\) (if # of irrational terms, with \(\sqrt{3}\), is one more than # rational terms), since only 9 is present among options then it must be a correct answers.

Hope it's clear.


I got confused on how you got from \(\frac{\sqrt{3}(\sqrt{3}^n-1)}{\sqrt{3}-1}=120+121\sqrt{3}\) --> \(\sqrt{3}(\sqrt{3}^n-1)=120\sqrt{3}+121*3-120-121\sqrt{3}\) to --> \(\sqrt{3}*\sqrt{3}^n-\sqrt{3}=243-\sqrt{3}\) --> \(\sqrt{3}*\sqrt{3}^n=243\) --> \(3^{\frac{1+n}{2}}=3^5\) --> \(\frac{1+n}{2}=5\) --> \(n=9\).

So the part after the cross multiplication, can you break it down further for me? Like what happened to the 121 *3 ?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,412
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,412
Kudos: 778,481
Kudos
Add Kudos
Bookmarks
Bookmark this Post
sagnik2422
Bunuel
Anasthaesium
How many terms of the series r 3^(1/2) + 3 + 3*(3^(1/2)) +.... will form 120 + 121*(3^(1/2))?

A. 3
B. 4
C. 5
D. 6
E. 9

We have a following sequence: \(\sqrt{3}\), \(3\), \(3\sqrt{3}\), \(9\), ...

Notice that this sequence is a geometric progression with first term equal to \(\sqrt{3}\) and common ratio also equal to \(\sqrt{3}\).

The question asks: the sum of how many terms of this sequence adds up to \(120+121\sqrt{3}\).

The sum of the first \(n\) terms of geometric progression is given by: \(sum=\frac{b*(r^{n}-1)}{r-1}\), (where \(b\) is the first term, \(n\) # of terms and \(r\) is a common ratio \(\neq{1}\)).

So, \(\frac{\sqrt{3}(\sqrt{3}^n-1)}{\sqrt{3}-1}=120+121\sqrt{3}\) --> \(\sqrt{3}(\sqrt{3}^n-1)=120\sqrt{3}+121*3-120-121\sqrt{3}\) --> \(\sqrt{3}*\sqrt{3}^n-\sqrt{3}=243-\sqrt{3}\) --> \(\sqrt{3}*\sqrt{3}^n=243\) --> \(3^{\frac{1+n}{2}}=3^5\) --> \(\frac{1+n}{2}=5\) --> \(n=9\).

Answer: E.

Shortcut solution:
Alternately you can spot that every second term (which also form a geometric progression), 3, 9, 27, ... should add up to 120: \(\frac{3(3^k-1)}{3-1}=120\) --> \(3^k-1=80\) --> \(3^k=81\) --> \(k=4\), so the number of terms must be either \(2k=8\) (if there are equal number of irrational and rational terms) or \(2k+1=9\) (if # of irrational terms, with \(\sqrt{3}\), is one more than # rational terms), since only 9 is present among options then it must be a correct answers.

Hope it's clear.


I got confused on how you got from \(\frac{\sqrt{3}(\sqrt{3}^n-1)}{\sqrt{3}-1}=120+121\sqrt{3}\) --> \(\sqrt{3}(\sqrt{3}^n-1)=120\sqrt{3}+121*3-120-121\sqrt{3}\) to --> \(\sqrt{3}*\sqrt{3}^n-\sqrt{3}=243-\sqrt{3}\) --> \(\sqrt{3}*\sqrt{3}^n=243\) --> \(3^{\frac{1+n}{2}}=3^5\) --> \(\frac{1+n}{2}=5\) --> \(n=9\).

So the part after the cross multiplication, can you break it down further for me? Like what happened to the 121 *3 ?

\(120\sqrt{3}+121*3-120-121\sqrt{3}\);
\((121*3-120)+(120\sqrt{3}-121\sqrt{3})\);
\(243-\sqrt{3}\).

\(\sqrt{3}*\sqrt{3}^n=243\);
\(3^{\frac{1}{2}}*3^{\frac{n}{2}}=3^5\);
\(3^{\frac{1+n}{2}}=3^5\);
\(\frac{1+n}{2}=5\);
\(n=9\).

Hope it's clear now.
User avatar
athoopal
Joined: 25 Aug 2014
Last visit: 09 Jan 2022
Posts: 3
Own Kudos:
Given Kudos: 1
Location: India
Concentration: Finance, International Business
GMAT 1: 710 Q47 V39
GPA: 2.95
WE:Military Officer (Military & Defense)
GMAT 1: 710 Q47 V39
Posts: 3
Kudos: 6
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Anasthaesium
How many terms of the series r 3^(1/2) + 3 + 3*(3^(1/2)) + 9 + ... will form 120 + 121*(3^(1/2))?

A. 3
B. 4
C. 5
D. 6
E. 9

Since four of the of the terms are provided and is = 12 +4*3^(1/2) approx 18, A & B eliminated
add 9*3^(1/2) approx 15 so sum approx 33 eliminated
once more and D eliminated , leaving E as the correct answer
avatar
dagoberto
Joined: 04 Sep 2014
Last visit: 12 Apr 2021
Posts: 18
Own Kudos:
Given Kudos: 4
Location: United States
GMAT 1: 690 Q46 V38
GMAT 2: 720 Q49 V39
GPA: 3.33
Products:
Kudos
Add Kudos
Bookmarks
Bookmark this Post
For me, as soon as I see that 1+3+27+81 = 120, x1 +3

I know the the series is either of the form: ? + 3 + ? + 9 + ? + 27 + ? + 81 + ? (9 terms)
or
? + 3 + ? + 9 + ? + 27 + ? + 81 (8 terms)...
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,598
Own Kudos:
Posts: 38,598
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
105411 posts
Tuck School Moderator
805 posts