GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 06 Dec 2019, 16:55

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

If 4t/3x = 2/3y + 2/5y and xy is not equal to 0, is t equal to 1?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 59587
If 4t/3x = 2/3y + 2/5y and xy is not equal to 0, is t equal to 1?  [#permalink]

Show Tags

New post 04 Apr 2016, 07:13
00:00
A
B
C
D
E

Difficulty:

  35% (medium)

Question Stats:

70% (01:43) correct 30% (02:16) wrong based on 124 sessions

HideShow timer Statistics

Current Student
avatar
Joined: 03 Jan 2014
Posts: 63
Concentration: Strategy, Operations
GMAT 1: 720 Q46 V42
GPA: 3.86
WE: Information Technology (Consulting)
Re: If 4t/3x = 2/3y + 2/5y and xy is not equal to 0, is t equal to 1?  [#permalink]

Show Tags

New post 04 Apr 2016, 17:15
I simplified the equation to \(t = 4x / 5y\). Also note that neither x nor y will be 0.
1) Given \(y = 5\), when we substitute this value into the simplified equation we get \(t = 4x / 25\). When \(x = 25/4\) the answer will be yes, if x is any other value the answer will be no => INSUFFICIENT

2) Given \(x = 5y/4\), this value substituted into the simplified formula yields \(t = 1\), so the answer is yes => SUFFICIENT

Answer: B
Intern
Intern
avatar
Joined: 09 Oct 2015
Posts: 36
Re: If 4t/3x = 2/3y + 2/5y and xy is not equal to 0, is t equal to 1?  [#permalink]

Show Tags

New post 22 Jul 2016, 11:07
Bunuel wrote:
If 4t/3x = 2/3y + 2/5y and xy is not equal to 0, is t equal to 1?

(1) y = 5

(2) x = 5y/4


Hi Bunuel

I was wondering if we could take the LCM of 5y and 3y which i thought will be 15 y. with this approach we end up eliminating y from the equation and to know the value of t, we only need the value of x. However using this method i am getting the incorrect answer. Can you help me understand why exactly we cant do this ?

Regards,
Shradha
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 59587
Re: If 4t/3x = 2/3y + 2/5y and xy is not equal to 0, is t equal to 1?  [#permalink]

Show Tags

New post 22 Jul 2016, 11:22
sgrover18 wrote:
Bunuel wrote:
If 4t/3x = 2/3y + 2/5y and xy is not equal to 0, is t equal to 1?

(1) y = 5

(2) x = 5y/4


Hi Bunuel

I was wondering if we could take the LCM of 5y and 3y which i thought will be 15 y. with this approach we end up eliminating y from the equation and to know the value of t, we only need the value of x. However using this method i am getting the incorrect answer. Can you help me understand why exactly we cant do this ?

Regards,
Shradha


How are you reducing y in \(\frac{4t}{3x} = \frac{2}{3y} +\frac{2}{5y}\)? Please show your work.
_________________
Intern
Intern
avatar
Joined: 09 Oct 2015
Posts: 36
Re: If 4t/3x = 2/3y + 2/5y and xy is not equal to 0, is t equal to 1?  [#permalink]

Show Tags

New post 22 Jul 2016, 14:07
Bunuel wrote:
sgrover18 wrote:
Bunuel wrote:
If 4t/3x = 2/3y + 2/5y and xy is not equal to 0, is t equal to 1?

(1) y = 5

(2) x = 5y/4


Hi Bunuel

I was wondering if we could take the LCM of 5y and 3y which i thought will be 15 y. with this approach we end up eliminating y from the equation and to know the value of t, we only need the value of x. However using this method i am getting the incorrect answer. Can you help me understand why exactly we cant do this ?

Regards,
Shradha


How are you reducing y in \(\frac{4t}{3x} = \frac{2}{3y} +\frac{2}{5y}\)? Please show your work.


Hi Bunuel,

I realised that while taking 15y as the LCM, I was still multiplying the numerators by 5y and 3y respectively, which was a mistake. This led to one 'y' in the numerator and one the denominator and I ended up cancelling them. Thanks for your time and sorry for the inconvenience !

Regards,
Shradha
Director
Director
avatar
S
Joined: 12 Nov 2016
Posts: 694
Location: United States
Schools: Yale '18
GMAT 1: 650 Q43 V37
GRE 1: Q157 V158
GPA: 2.66
Re: If 4t/3x = 2/3y + 2/5y and xy is not equal to 0, is t equal to 1?  [#permalink]

Show Tags

New post 08 Sep 2017, 21:55
Bunuel wrote:
If \(\frac{4t}{3x} = \frac{2}{3y} +\frac{2}{5y}\) and xy is not equal to 0, is t equal to 1?

(1) y = 5

(2) \(x = \frac{5y}{4}\)


This is another cumbersome "C" trap question- what this question is testing is your ability to manipulate fractions- a basic rule of thumb whenever you have a whole integer divided by a fraction a faster way to rewrite is

8 / (2/4) =

8 (4) /2 = 32/2 =16

Just multiply the numerator by the bottom most denominator. And always try to rewrite the stimulus

4t/3x = 10y +6y/15y
4t/3x =16y/15y

St 1

No inf about Y or any relative values or anything like that

insuff

St 2

Basically



4t/ 15y/ 4=
16t/15y = 16y/15y

And because X and Y cannot be 0 the only choice is 1

B
Retired Moderator
avatar
D
Joined: 25 Feb 2013
Posts: 1159
Location: India
GPA: 3.82
GMAT ToolKit User Reviews Badge
Re: If 4t/3x = 2/3y + 2/5y and xy is not equal to 0, is t equal to 1?  [#permalink]

Show Tags

New post 08 Sep 2017, 22:17
Bunuel wrote:
If \(\frac{4t}{3x} = \frac{2}{3y} +\frac{2}{5y}\) and xy is not equal to 0, is t equal to 1?

(1) y = 5

(2) \(x = \frac{5y}{4}\)


As we need to find the value of \(t\), it will be good to simplify the equation with \(t\) as the dependent variable and \(x\) & \(y\) as the independent variable before looking at the statements
\(\frac{4t}{3x} = \frac{2}{y}(\frac{1}{3}+\frac{1}{5})\), or
\(t = \frac{3x}{2y}*\frac{8}{15}\)----------\((1)\)
so to find the value of \(t\) we need a relationship between \(x\) & \(y\)

Statement 1: provides only the value of \(y\) but not of \(x\). Hence Insufficient

Statement 2: provides the relationship between \(x\) & \(y\) and on putting the value of \(x\) in equation \((1)\) we will get a definite value of \(t\). Hence Sufficient

Option B
Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 13722
Re: If 4t/3x = 2/3y + 2/5y and xy is not equal to 0, is t equal to 1?  [#permalink]

Show Tags

New post 20 Nov 2019, 05:55
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Club Bot
Re: If 4t/3x = 2/3y + 2/5y and xy is not equal to 0, is t equal to 1?   [#permalink] 20 Nov 2019, 05:55
Display posts from previous: Sort by

If 4t/3x = 2/3y + 2/5y and xy is not equal to 0, is t equal to 1?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne