GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 25 Sep 2018, 06:16

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

If k is a positive integer, what is the remainder when (k + 2)(k^3 – k

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Director
Director
User avatar
B
Status: I don't stop when I'm Tired,I stop when I'm done
Joined: 11 May 2014
Posts: 542
Location: Bangladesh
Concentration: Finance, Leadership
GPA: 2.81
WE: Business Development (Real Estate)
If k is a positive integer, what is the remainder when (k + 2)(k^3 – k  [#permalink]

Show Tags

New post Updated on: 17 Jun 2017, 12:18
4
Top Contributor
11
00:00
A
B
C
D
E

Difficulty:

  5% (low)

Question Stats:

86% (01:12) correct 14% (01:39) wrong based on 822 sessions

HideShow timer Statistics

If k is a positive integer, what is the remainder when (k + 2)(k^3 – k) is divided by 6 ?

A. 0
B. 1
C. 2
D. 3
E. 4

_________________

Md. Abdur Rakib

Please Press +1 Kudos,If it helps
Sentence Correction-Collection of Ron Purewal's "elliptical construction/analogies" for SC Challenges


Originally posted by AbdurRakib on 17 Jun 2017, 08:32.
Last edited by Bunuel on 17 Jun 2017, 12:18, edited 1 time in total.
Renamed the topic and edited the question.
Most Helpful Expert Reply
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 49495
Re: If k is a positive integer, what is the remainder when (k + 2)(k^3 – k  [#permalink]

Show Tags

New post 17 Jun 2017, 12:32
11
5
AbdurRakib wrote:
If k is a positive integer, what is the remainder when (k + 2)(k^3 – k) is divided by 6 ?

A. 0
B. 1
C. 2
D. 3
E. 4


There is a rule saying that: The product of n consecutive integers is always divisible by n!.

\((k + 2)(k^3 – k) = (k + 2)k(k^2 – 1) = (k + 2)k(k – 1)(k+1)=(k – 1)k(k+1)(k + 2)\).

As we can see we have the product of 4 consecutive integers: (k – 1), k, (k+1), and (k + 2). Thus, the product will always be divisible by 4! = 24, which means that it will be divisible by 6 too.

Answer: A.

Of course we can simply plug-in numbers: since PS question cannot have more than 1 correct answer, then for any k the answer must be the same. For example, if k = 1, then the product becomes 0. 0 divided by 6 gives the remainder of 0 (0 is a multiple of every integer, except 0 itself).
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Most Helpful Community Reply
Director
Director
User avatar
D
Joined: 04 Dec 2015
Posts: 701
Location: India
Concentration: Technology, Strategy
Schools: ISB '19, IIMA , IIMB, XLRI
WE: Information Technology (Consulting)
GMAT ToolKit User
Re: If k is a positive integer, what is the remainder when (k + 2)(k^3 – k  [#permalink]

Show Tags

New post 17 Jun 2017, 08:42
8
2
AbdurRakib wrote:
If k is a positive integer, what is the remainder when (k + 2)(\(k^{3}\) – k) is divided by 6 ?

A. 0
B. 1
C. 2
D. 3
E. 4


\((k + 2)(k^{3}\) – k) \(= (k + 2) (k (k^2-1))\)

\((k + 2) k(k+1)(k-1\))

or could be written as

\((k-1)k(k+1)(k+2)\)

Its product of 4 consecutive numbers. Product of 3 consecutive numbers is always divisible by 6, Hence given number is divisible by 6.

Therefore remainder will be 0. Answer (A).
General Discussion
Manager
Manager
avatar
B
Joined: 30 Mar 2017
Posts: 69
Re: If k is a positive integer, what is the remainder when (k + 2)(k^3 – k  [#permalink]

Show Tags

New post 17 Jun 2017, 08:38
2
0. As k can be shown as product of three integers. Always divisible by 6

Sent from my Moto G (5) Plus using GMAT Club Forum mobile app
Intern
Intern
avatar
B
Joined: 26 Jun 2014
Posts: 21
Re: If k is a positive integer, what is the remainder when (k + 2)(k^3 – k  [#permalink]

Show Tags

New post 19 Jun 2017, 10:38
BeingHan wrote:
0. As k can be shown as product of three integers. Always divisible by 6



Did you mean that k is a product of three *consecutive* integers? Then you are correct, always divisible by 6.
Retired Moderator
User avatar
P
Joined: 19 Mar 2014
Posts: 958
Location: India
Concentration: Finance, Entrepreneurship
GPA: 3.5
GMAT ToolKit User Premium Member
Re: If k is a positive integer, what is the remainder when (k + 2)(k^3 – k  [#permalink]

Show Tags

New post 24 Jun 2017, 16:15
4
\((k + 2) (k^3 – k)\)

\((k + 2) (k (K^2 - 1))\)

\((k + 2) k (k + 1) (k - 1)\)

\((k - 1) k (k + 1) (k + 2)\)

As we can see that above numbers are 4 consecutive integers, and as we know \(4\) consecutive integers are multiples of \(4! = 4 * 3 * 2 * 1 = 24\)

Hence, as \(24\)is divisible by \(6\), equation will be commpletely divisible by \(6\) and hence reminder will be ZERO.

Hence, Answer is A

One Kudos if you Like :-D
_________________

"Nothing in this world can take the place of persistence. Talent will not: nothing is more common than unsuccessful men with talent. Genius will not; unrewarded genius is almost a proverb. Education will not: the world is full of educated derelicts. Persistence and determination alone are omnipotent."

Best AWA Template: https://gmatclub.com/forum/how-to-get-6-0-awa-my-guide-64327.html#p470475

CEO
CEO
User avatar
D
Joined: 12 Sep 2015
Posts: 2901
Location: Canada
Re: If k is a positive integer, what is the remainder when (k + 2)(k^3 – k  [#permalink]

Show Tags

New post 28 Jun 2017, 06:58
1
Top Contributor
3
AbdurRakib wrote:
If k is a positive integer, what is the remainder when (k + 2)(k³ – k) is divided by 6 ?

A. 0
B. 1
C. 2
D. 3
E. 4


Alternatively, we can plug in any positive integer for k and see what happens.

Try k = 1
We get: (k + 2)(k³ – k) = (1 + 2)(1³ – 1)
= (3)(0)
= 0
When we divide 0 by 6 we get 0 with remainder 0
Answer:

Just for "fun," let's test another k-value
Try k = 2
We get: (k + 2)(k³ – k) = (2 + 2)(2³ – 2)
= (4)(6)
= 24
When we divide 24 by 6 we get 4 with remainder 0
Answer:

Try k = 3
We get: (k + 2)(k³ – k) = (3 + 2)(3³ – 3)
= (5)(24)
= 120
When we divide 120 by 6 we get 20 with remainder 0
Answer:

And so on...

RELATED VIDEO

_________________

Brent Hanneson – GMATPrepNow.com
Image
Sign up for our free Question of the Day emails

Board of Directors
User avatar
P
Status: QA & VA Forum Moderator
Joined: 11 Jun 2011
Posts: 4033
Location: India
GPA: 3.5
WE: Business Development (Commercial Banking)
GMAT ToolKit User Premium Member
If k is a positive integer, what is the remainder when (k + 2)(k^3 – k  [#permalink]

Show Tags

New post 28 Jun 2017, 08:52
AbdurRakib wrote:
If k is a positive integer, what is the remainder when (k + 2)(k^3 – k) is divided by 6 ?

A. 0
B. 1
C. 2
D. 3
E. 4


\((k + 2)(k^3 – k)\)
= \((k + 2)k(k^2 – 1)\)
= \((k + 2)k(k – 1)(k + 1)\)

Plug in numbers and check -

Let k = 2

\((k + 2)k(k – 1)(k + 1)\) = \(4*2*1*3\) = \(24\) ( Divided by 6 , remainder will be 0)

Let k = 3

\((k + 2)k(k – 1)(k + 1)\) = \(5*3*2*4\) = \(120\) ( Divided by 6 , remainder will be 0)

Thus, the answer will be (A) 0
_________________

Thanks and Regards

Abhishek....

PLEASE FOLLOW THE RULES FOR POSTING IN QA AND VA FORUM AND USE SEARCH FUNCTION BEFORE POSTING NEW QUESTIONS

How to use Search Function in GMAT Club | Rules for Posting in QA forum | Writing Mathematical Formulas |Rules for Posting in VA forum | Request Expert's Reply ( VA Forum Only )

Target Test Prep Representative
User avatar
G
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2835
Re: If k is a positive integer, what is the remainder when (k + 2)(k^3 – k  [#permalink]

Show Tags

New post 06 Jul 2017, 17:49
AbdurRakib wrote:
If k is a positive integer, what is the remainder when (k + 2)(k^3 – k) is divided by 6 ?

A. 0
B. 1
C. 2
D. 3
E. 4


Let’s simplify the given expression:

(k + 2)(k^3 – k) = (k + 2)[k(k^2 - 1)] = (k + 2)(k)(k + 1)(k - 1)

Reordering the factors in the expression, we have:

(k - 1)(k)(k + 1)(k + 2), which is a product of 4 consecutive integers. Since the product of n consecutive integers is always divisible by n!, the product of 4 consecutive integers is always divisible by 4! = 24 and hence by 6. Thus, the remainder when (k + 2)(k^3 – k) is divided by 6 is 0.

Answer: A
_________________

Jeffery Miller
Head of GMAT Instruction

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

EMPOWERgmat Instructor
User avatar
V
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 12450
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Re: If k is a positive integer, what is the remainder when (k + 2)(k^3 – k  [#permalink]

Show Tags

New post 09 Jan 2018, 18:28
Hi All,

This question it perfect for TESTing VALUES (the approach that Abhishek009 used). The question is also based on a subtle Number Property rule about consecutive integers.

(K+2)(K^3 - K) can be rewritten as....
(K+2)(K)(K^2 - 1) =
(K+2)(K)(K+1)(K-1)

When multiplying numbers, the 'order' doesn't matter, so you can re-order those 4 'pieces' as...
(K-1)(K)(K+1)(K+2)

We're told that K is a positive integer, so what you have here is the product of 4 consecutive integers (they'll either all be positive or it's be 0-1-2-3) and EVERY 4 consecutive integers will include at least two multiples of 2 and a multiple of 3. By extension, this product will be some multiple of (2)(3) = 6, so when you divide the product by 6 you'll get a remainder of 0.

Final Answer:

GMAT assassins aren't born, they're made,
Rich
_________________

760+: Learn What GMAT Assassins Do to Score at the Highest Levels
Contact Rich at: Rich.C@empowergmat.com

Rich Cohen

Co-Founder & GMAT Assassin

Special Offer: Save $75 + GMAT Club Tests Free
  Official GMAT Exam Packs + 70 Pt. Improvement Guarantee
www.empowergmat.com/

***********************Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!***********************

Director
Director
User avatar
P
Joined: 09 Mar 2016
Posts: 884
Re: If k is a positive integer, what is the remainder when (k + 2)(k^3 – k  [#permalink]

Show Tags

New post 23 Feb 2018, 06:22
Bunuel wrote:
AbdurRakib wrote:
If k is a positive integer, what is the remainder when (k + 2)(k^3 – k) is divided by 6 ?

A. 0
B. 1
C. 2
D. 3
E. 4


There is a rule saying that: The product of n consecutive integers is always divisible by n!.

\((k + 2)(k^3 – k) = (k + 2)k(k^2 – 1) = (k + 2)k(k – 1)(k+1)=(k – 1)k(k+1)(k + 2)\).

As we can see we have the product of 4 consecutive integers: (k – 1), k, (k+1), and (k + 2). Thus, the product will always be divisible by 4! = 24, which means that it will be divisible by 6 too.

Answer: A.

Of course we can simply plug-in numbers: since PS question cannot have more than 1 correct answer, then for any k the answer must be the same. For example, if k = 1, then the product becomes 0. 0 divided by 6 gives the remainder of 0 (0 is a multiple of every integer, except 0 itself).



Hi Bunuel :)

can you please explain one thing. pleeeese :)

ok so you say we hav a product of 4 consecutive integers (k – 1), k, (k+1), and (k + 2) but that one K is not in the form of (k-1) it is just single K :) why ?

for example i have this (k – 1), k, (k+1), and (k + 2) and will take 4 and plug in

so i get (4 – 1), 4, (4+1), and (4 + 2) --- > 3, 4, 5, 6

but if I take 0 for K i get ( 0 – 1), 0, (0+1), and (0+ 2) ---> i get 0 and then remain is 6 ? :?


thank you :)
_________________

In English I speak with a dictionary, and with people I am shy.

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 49495
Re: If k is a positive integer, what is the remainder when (k + 2)(k^3 – k  [#permalink]

Show Tags

New post 23 Feb 2018, 06:48
1
dave13 wrote:
Bunuel wrote:
AbdurRakib wrote:
If k is a positive integer, what is the remainder when (k + 2)(k^3 – k) is divided by 6 ?

A. 0
B. 1
C. 2
D. 3
E. 4


There is a rule saying that: The product of n consecutive integers is always divisible by n!.

\((k + 2)(k^3 – k) = (k + 2)k(k^2 – 1) = (k + 2)k(k – 1)(k+1)=(k – 1)k(k+1)(k + 2)\).

As we can see we have the product of 4 consecutive integers: (k – 1), k, (k+1), and (k + 2). Thus, the product will always be divisible by 4! = 24, which means that it will be divisible by 6 too.

Answer: A.

Of course we can simply plug-in numbers: since PS question cannot have more than 1 correct answer, then for any k the answer must be the same. For example, if k = 1, then the product becomes 0. 0 divided by 6 gives the remainder of 0 (0 is a multiple of every integer, except 0 itself).



Hi Bunuel :)

can you please explain one thing. pleeeese :)

ok so you say we hav a product of 4 consecutive integers (k – 1), k, (k+1), and (k + 2) but that one K is not in the form of (k-1) it is just single K :) why ?

for example i have this (k – 1), k, (k+1), and (k + 2) and will take 4 and plug in

so i get (4 – 1), 4, (4+1), and (4 + 2) --- > 3, 4, 5, 6

but if I take 0 for K i get ( 0 – 1), 0, (0+1), and (0+ 2) ---> i get 0 and then remain is 6 ? :?


thank you :)


0 is divisible by every integer (except 0 itself): 0/integer = integer. So, 0 divided by 6 gives the remainder of 0.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

GMAT Club Bot
Re: If k is a positive integer, what is the remainder when (k + 2)(k^3 – k &nbs [#permalink] 23 Feb 2018, 06:48
Display posts from previous: Sort by

If k is a positive integer, what is the remainder when (k + 2)(k^3 – k

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  

Events & Promotions

PREV
NEXT


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.