It is currently 20 Jan 2018, 03:27

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

M is a positive integer, is M odd?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 43335

Kudos [?]: 139549 [0], given: 12794

M is a positive integer, is M odd? [#permalink]

Show Tags

New post 24 Jun 2016, 02:21
Expert's post
6
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  75% (hard)

Question Stats:

51% (01:38) correct 49% (01:22) wrong based on 124 sessions

HideShow timer Statistics

Kudos [?]: 139549 [0], given: 12794

Manager
Manager
User avatar
S
Joined: 22 Jun 2016
Posts: 244

Kudos [?]: 115 [0], given: 10

Reviews Badge
Re: M is a positive integer, is M odd? [#permalink]

Show Tags

New post 24 Jun 2016, 03:58
2
This post was
BOOKMARKED
Statement 1: 2M^3 + 2M mod 8 = 0 -----> 2M(M^2+1) mod 8 =0 -----> M(M^2+1) mod 4 = 0

We know that square of even is even and square of odd is odd. So, if M is even, (M^2+1) will be odd and if M is off (M^2+1) will be even.
For M(M^2+1) mod 4 = 0 to be true we want one of M or (M^2+1) to be divisible by 4.

For even M, such as M=4, we can have M(M^2+1) mod 4 = 0
For any odd M... (M^2+1) mod 2 will be = 0 but (M^2+1) mod 4 will never be = 0
For ex. M=3 ---> M^2+1=10, M=5 ---> M^2+1=26, M=7 ---> M^2+1=50, M=9 ----> M^2+1=82

Hence, we can conclude that M has to be even in order to have M(M^2+1) mod 4 = 0

Statement 1 Sufficient.

Statement 2: M+10 mod 10 = 0
So, M has to be a multiple of 10 for above to be true and all multiple of 10 are even.

Statement 2 satisfies.

Answer D.

-------------------------------------

P.S. Don't forget to give Kudos. :)
_________________

P.S. Don't forget to give Kudos :)


Last edited by 14101992 on 24 Jun 2016, 10:36, edited 2 times in total.

Kudos [?]: 115 [0], given: 10

Manager
Manager
User avatar
B
Status: In the realms of Chaos & Night
Joined: 13 Sep 2015
Posts: 171

Kudos [?]: 106 [0], given: 95

Re: M is a positive integer, is M odd? [#permalink]

Show Tags

New post 24 Jun 2016, 10:20
Bunuel wrote:
M is a positive integer, is M odd?

(1) 2M^3 + 2M is divisible by 8.
(2) M + 10 is divisible by 10.


Statement 1)
Case 1 :: M=1 => 2x\(1^3\)+2x1 = 4 .. Not divisible by 8
Case 2 :: M=4 => 2x\(4^3\)+2x4 = 136 .. Divisible by 8 .. Not sufficient

Statement 2) M is multiple of 10 .. M is even .. Sufficient

Anser Choice B)

Good luck
=========================================================================================
"If a street performer makes you stop walking, you owe him a buck"
"If this post helps you on your GMAT journey, drop a +1 Kudo "

_________________

Good luck
=========================================================================================
"If a street performer makes you stop walking, you owe him a buck"
"If this post helps you on your GMAT journey, drop a +1 Kudo "


"Thursdays with Ron - Consolidated Verbal Master List - Updated"

Kudos [?]: 106 [0], given: 95

Manager
Manager
User avatar
S
Joined: 22 Jun 2016
Posts: 244

Kudos [?]: 115 [0], given: 10

Reviews Badge
Re: M is a positive integer, is M odd? [#permalink]

Show Tags

New post 24 Jun 2016, 10:39
Nightfury14
In statement 1, no conclusion can be drawn using case 1 and case 2. To make statement 1 insufficient, a case has to be shown in which M=odd satisfies the condition 2M^3 + 2M is divisible by 8. Which is not possible.

And hence the answer would be D.
_________________

P.S. Don't forget to give Kudos :)

Kudos [?]: 115 [0], given: 10

Manager
Manager
User avatar
B
Status: In the realms of Chaos & Night
Joined: 13 Sep 2015
Posts: 171

Kudos [?]: 106 [0], given: 95

Re: M is a positive integer, is M odd? [#permalink]

Show Tags

New post 24 Jun 2016, 11:28
14101992 wrote:
Nightfury14
In statement 1, no conclusion can be drawn using case 1 and case 2. To make statement 1 insufficient, a case has to be shown in which M=odd satisfies the condition 2M^3 + 2M is divisible by 8. Which is not possible.

And hence the answer would be D.


Yeah .. you are right
I solved the question on timer, then while writing the answer lost track of what was the criteria.
Thanks for pointing out..
_________________

Good luck
=========================================================================================
"If a street performer makes you stop walking, you owe him a buck"
"If this post helps you on your GMAT journey, drop a +1 Kudo "


"Thursdays with Ron - Consolidated Verbal Master List - Updated"

Kudos [?]: 106 [0], given: 95

Intern
Intern
avatar
Joined: 26 May 2016
Posts: 42

Kudos [?]: 9 [0], given: 1

Location: India
Concentration: Strategy, Technology
Schools: IIMA (A)
GMAT 1: 650 Q49 V32
GPA: 3.65
WE: Information Technology (Computer Software)
Re: M is a positive integer, is M odd? [#permalink]

Show Tags

New post 24 Jun 2016, 19:41
M is a positive integer, is M odd?

(1) 2M^3 + 2M is divisible by 8.
(2) M + 10 is divisible by 10.


A : we can simplify it to : M(M^2 + 1) is divisible by 4 , this does not hold for odd values of M hence its sufficient

B this says that M is a multiple of 10 , which means M is even

My Choice : D , lets wait for the OA
_________________

Best Regards,
Ashwini

Kudos if it was helpful :)

Kudos [?]: 9 [0], given: 1

Intern
Intern
avatar
B
Joined: 17 Jan 2015
Posts: 38

Kudos [?]: 5 [0], given: 508

Location: India
GMAT 1: 620 Q42 V34
GMAT 2: 710 Q49 V38
Reviews Badge
Re: M is a positive integer, is M odd? [#permalink]

Show Tags

New post 25 Jun 2016, 05:57
Hi,

Can someone explain in detail why statement 1 is sufficient.

Thanks.

Kudos [?]: 5 [0], given: 508

3 KUDOS received
Manager
Manager
User avatar
S
Joined: 22 Jun 2016
Posts: 244

Kudos [?]: 115 [3], given: 10

Reviews Badge
Re: M is a positive integer, is M odd? [#permalink]

Show Tags

New post 25 Jun 2016, 06:04
3
This post received
KUDOS
1
This post was
BOOKMARKED
pallaviisinha

Statement 1: 2M^3 + 2M mod 8 = 0 -----> 2M(M^2+1) mod 8 =0 -----> M(M^2+1) mod 4 = 0

We know that square of even is even and square of odd is odd. So, if M is even, (M^2+1) will be odd (as even*even+1 is odd)
and if M is odd (M^2+1) will be even (as odd*odd +1 will be even.

For M(M^2+1) mod 4 = 0 to be true we want one of M or (M^2+1) to be divisible by 4.

For even M, such as M=4, we can have M(M^2+1) mod 4 = 0

For any odd M... (M^2+1) mod 2 will be = 0 but (M^2+1) mod 4 will never be = 0

For ex. M=3 ---> M^2+1=10, M=5 ---> M^2+1=26, M=7 ---> M^2+1=50, M=9 ----> M^2+1=82
[all (M^2+1) mod 4 is not equal to 0]

Hence, we can conclude that M has to be even in order to have M(M^2+1) mod 4 = 0

Therefore, Statement 1 is sufficient.

------------------------------------

P.S. Don't forget to give kudos if you got the explanation.
_________________

P.S. Don't forget to give Kudos :)

Kudos [?]: 115 [3], given: 10

Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 14223

Kudos [?]: 291 [0], given: 0

Premium Member
Re: M is a positive integer, is M odd? [#permalink]

Show Tags

New post 07 Dec 2017, 09:13
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Kudos [?]: 291 [0], given: 0

Re: M is a positive integer, is M odd?   [#permalink] 07 Dec 2017, 09:13
Display posts from previous: Sort by

M is a positive integer, is M odd?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.