fskilnik
[GMATH course practice question]
Points \((x,y)\) in the rectangular coordinate plane such that \(\,y = {x^2} + mx + \left( {8 - m} \right)\,\) are presented in the graph shown, where \(m\) is constant. What is the value of \(k+p\) ?
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5
I am sorry no one contributed (yet), but I hope you all enjoy my solution!
\(? = k + p\)
\(y = {x^2} + mx + \left( {8 - m} \right)\,\,\,\,\,\,,\,\,\,m\,\,{\text{cte}}\,\,\,\,\,\left( * \right)\)
\(k = {x_{{\text{vertex}}}}\mathop = \limits^{\left( \odot \right)} \,\, - \frac{m}{{2 \cdot 1}}\,\,\,\,\, \Rightarrow \,\,\,\,\,m = - 2k\,\,\,\left( {**} \right)\)
\(\left( {k,0} \right)\,\,\, \in \,\,\,{\text{graph}}\,\,\,\,\,\mathop \Rightarrow \limits^{\left( * \right)} \,\,\,\,0 = \,\,{k^2} + mk + \left( {8 - m} \right)\,\,\,\,\,\mathop \Rightarrow \limits^{\left( {**} \right)} \,\,\,\,\,\,\,\,0 = - {k^2} + 2k + 8\)
\(0 = - {k^2} + 2k + 8\,\,\,\,\mathop \Rightarrow \limits^{{\text{Sum}}\, = \,2\,\,,\,\,\,{\text{Product}}\, = \,\, - 8} \,\,\,\,k = - 2\,\,\,{\text{or}}\,\,\,k = 4\,\,\,\mathop \Rightarrow \limits^{k\, < \,\,0\,\,\,\left( {f{\text{igure}}} \right)} \,\,\,\,k = - 2\)
\(\left( {0,p} \right)\,\,\, \in \,\,\,{\text{graph}}\,\,\,\,\,\mathop \Rightarrow \limits^{\left( * \right)} \,\,\,\,p = \,\,{0^2} + m \cdot 0 + \left( {8 - m} \right)\,\,\,\,\,\mathop \Rightarrow \limits^{\left( {**} \right)} \,\,\,\,\,\,\,\,p = 8 + 2k = 8 + 2\left( { - 2} \right) = 4\)
\(? = k + p = - 2 + 4 = \boxed2\)
Reminder:
\(\left( \odot \right)\,\,y = a{x^2} + bx + c\,\,\,\,\left( {a \ne 0} \right)\,\,\,\, \Rightarrow \,\,\,\,\,\,{x_{{\text{vertex}}}} = - \frac{b}{{2a}}\)
The above follows the notations and rationale taught in the GMATH method.
Regards,
fskilnik.
Attachments
03Set18_7m.gif [ 6.22 KiB | Viewed 3692 times ]