Last visit was: 19 Jul 2025, 18:14 It is currently 19 Jul 2025, 18:14
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
avatar
GSBae
Joined: 23 May 2013
Last visit: 07 Mar 2025
Posts: 167
Own Kudos:
Given Kudos: 42
Location: United States
Concentration: Technology, Healthcare
GMAT 1: 760 Q49 V45
GPA: 3.5
GMAT 1: 760 Q49 V45
Posts: 167
Kudos: 445
Kudos
Add Kudos
Bookmarks
Bookmark this Post
avatar
sayansarkar
Joined: 28 Jul 2013
Last visit: 15 Sep 2020
Posts: 43
Own Kudos:
Given Kudos: 37
Location: India
Concentration: Marketing, Strategy
GPA: 3.62
WE:Engineering (Manufacturing)
Posts: 43
Kudos: 102
Kudos
Add Kudos
Bookmarks
Bookmark this Post
avatar
PareshGmat
Joined: 27 Dec 2012
Last visit: 10 Jul 2016
Posts: 1,538
Own Kudos:
Given Kudos: 193
Status:The Best Or Nothing
Location: India
Concentration: General Management, Technology
WE:Information Technology (Computer Software)
Posts: 1,538
Kudos: 7,900
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
PiyushK
Joined: 22 Mar 2013
Last visit: 19 May 2023
Posts: 599
Own Kudos:
Given Kudos: 235
Status:Everyone is a leader. Just stop listening to others.
Location: India
GPA: 3.51
WE:Information Technology (Computer Software)
Products:
Posts: 599
Kudos: 4,879
Kudos
Add Kudos
Bookmarks
Bookmark this Post
WoundedTiger
What is the remainder when 1044 * 1047 * 1050 * 1053 is divided by 33?

A. 3
B. 27
C. 30
D. 21
E. 18

Can somebody suggest a trick to solve this question.


Hi,

Math Experts....need help on this one....

We need to find the remainder in the above case. I started by finding whether any term is divisible by 33 and found the nearest multiple to be 1056 and changed the question to

(1056-12)*(1056-9)*(1056-6)*(1056-3)/33 which can be further reduced to

(-12)(-9)(-6)(-3)/ 33
On simplifying further we get -------> -12*-9*-6*-1/11-------> 648/11 ---Remainder 10.....its not even in the answers choices...

please suggest what's wrong with my approach

Because you reduced you fraction by 3. That's the reason you are getting 10. Multiply 10 by 3 and you will get correct remainder 30.
If one reduce fraction by some factor to simplify the calculation then one must not forget to multiply answer by same factor in the end.
User avatar
manhasnoname
Joined: 21 Apr 2016
Last visit: 03 Feb 2025
Posts: 138
Own Kudos:
Given Kudos: 79
Products:
Posts: 138
Kudos: 72
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Answer should be 3. Here is my analysis:

Since all the numbers in the numerator are divisible by 3, the fraction can be reduced to a number with a denominator 11. The remainder should always be less than the divisor. So dividing a number with 11 should leave a remainder less than 11. Looking at the answer choices 3 is the only one that is less than 11.

I tried computing in a calculator (( 1044 * 1047 * 1050 * 1053) + 3) / 33 did not leave any remainder.

Please someone update the OA. It is (A)
User avatar
BillyZ
User avatar
Current Student
Joined: 14 Nov 2016
Last visit: 03 May 2025
Posts: 1,147
Own Kudos:
Given Kudos: 926
Location: Malaysia
Concentration: General Management, Strategy
GMAT 1: 750 Q51 V40 (Online)
GPA: 3.53
Products:
Kudos
Add Kudos
Bookmarks
Bookmark this Post
What is the remainder when 1044*1047*1050*1053 is divided by 33?

A. 3
B. 27
C. 30
D. 21
E. 18

Bunuel, Is it the correct approach?

1044*1047*1050*1053 = n*(n + 3)*(n + 6)*(n + 9)

3*6*9 = 162

162/33, remainder = 30
User avatar
Nikkb
User avatar
Current Student
Joined: 02 Jul 2017
Last visit: 08 Jan 2024
Posts: 230
Own Kudos:
Given Kudos: 70
Concentration: Entrepreneurship, Technology
GMAT 1: 730 Q50 V38
Kudos
Add Kudos
Bookmarks
Bookmark this Post
manhasnoname
Answer should be 3. Here is my analysis:

Since all the numbers in the numerator are divisible by 3, the fraction can be reduced to a number with a denominator 11. The remainder should always be less than the divisor. So dividing a number with 11 should leave a remainder less than 11. Looking at the answer choices 3 is the only one that is less than 11.

I tried computing in a calculator (( 1044 * 1047 * 1050 * 1053) + 3) / 33 did not leave any remainder.

Please someone update the OA. It is (A)


Just a comment on your logic :
If you are saying :
"I tried computing in a calculator (( 1044 * 1047 * 1050 * 1053) + 3) / 33 did not leave any remainder. "
than here remainder will be 33-3=30 .. not 3...

example.... 16/10 = 1 quotient and 6 remainder....
in your terms : (16+4)/10 does not leave a remainder so 16/10 doesn't have a remainder of 4.. instead remainder is 10-4 =6

so if on calculator you see after adding 3.. number gets properly divided means original remainder is 33-3 ie 30. which is the correct answer.

Hope m clear.
User avatar
GMATGuruNY
Joined: 04 Aug 2010
Last visit: 08 Jul 2025
Posts: 1,345
Own Kudos:
3,669
 [1]
Given Kudos: 9
Schools:Dartmouth College
Expert
Expert reply
Posts: 1,345
Kudos: 3,669
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
What is the remainder when 30 is divided by 4?

One approach:
1. Break the dividend 30 into factors: 30 = 5*6
2. Divide the divisor 4 into each factor: 5/4 = 1 R1, 6/4 = 1 R2
3. Multiple the resulting remainders: 1*2 = 2

Step 3 indicates that 30 divided by 4 will yield a remainder of 2.
This approach can be applied to any problem that asks for the remainder when a large integer is divided by a divisor.
Repeat the 3 steps until the value yielded by Step 3 is less than the divisor.

Quote:
What is the remainder when 1044*1047*1050*1053 is divided by 33?

A. 3
B. 27
C. 30
D. 21
E. 18

Since 1044 has a digit sum that is a multiple of 3 (1+0+4+4=9), 1044 is divisible by 3:
1044 = 3*348
Since 1047 is 3 more than 1044, 1047 = 3*348 + 3 = 3(348+1) = 3*349
By extension:
1050 = 3*350
1053 = 3*351
Thus:
1044*1047*1050*1053 = (3*348)(3*349)(3*350)(3*351) = 81*348*349*350*351

Dividing 33 into each of the five factors in blue and multiplying the resulting remainders, we get:
15*18*19*20*21

18*20 = 360
19*21 = (20-1)(20+1) = 20²-1² = 400-1 = 399
Thus:
15*18*19*20*21 = 15*360*399

Dividing 33 into each of the 3 factors in red and multiplying the resulting remainders, we get:
15*30*3

15*30*3 = 1350
Dividing 33 into 1350, we get:
40 R30
The value in green is less than the divisor (33) and thus is the desired remainder.

.
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 37,451
Own Kudos:
Posts: 37,451
Kudos: 1,013
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
   1   2 
Moderators:
Math Expert
102627 posts
PS Forum Moderator
698 posts