GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 18 Oct 2019, 14:14

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

What is the value of y?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Current Student
User avatar
G
Joined: 04 Feb 2014
Posts: 216
Location: India
Concentration: General Management, Entrepreneurship
GPA: 3
WE: Project Management (Manufacturing)
GMAT ToolKit User
What is the value of y?  [#permalink]

Show Tags

New post 24 Jun 2016, 08:21
4
49
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

28% (01:56) correct 72% (01:55) wrong based on 515 sessions

HideShow timer Statistics

What is the value of y?


(1) \(3y-1=\sqrt{(8y^2-4y+9)}\)

(2) \(y^2–2y–8 = 0\)

_________________
Kudos if you like my post
Most Helpful Community Reply
Current Student
User avatar
G
Joined: 04 Feb 2014
Posts: 216
Location: India
Concentration: General Management, Entrepreneurship
GPA: 3
WE: Project Management (Manufacturing)
GMAT ToolKit User
Re: What is the value of y?  [#permalink]

Show Tags

New post 24 Jun 2016, 09:20
10
3
Yes the ans is A... This is a brilliant question from Magoosh... Below is the OE..


Using a tried and true DS strategy, start with the easier statement, Statement #2.

Statement #2:

(y – 4)(y + 2) = 0

y = +4 or y = –2

Since there are two values of y, this statement, alone and by itself, is not sufficient.

Statement #1:

This is an equation with a radical. The radical is already isolated, so square both sides.

(3y – 1)2 = 8y2 – 4y + 9

9y2 – 6y + 1 = 8y2 – 4y + 9

y2 – 2y – 8 = 0

Lo and behold! We have arrived at the same equation we found in Statement #2, with solutions y = +4 or y = –2. The naïve conclusion would be—this statement says exactly the same thing as the other. That's incorrect, though, because we don't know whether both of these values are valid solutions, or whether one or more is an extraneous root. We need to test this in the original equation.

Test y = +4 on equation 3y-1=√(8y^2-4y+9)
LHS=RHS

Test y = –2 on equation 3y-1=√(8y^2-4y+9)

The LHS and RHS are not equal, so this does not check! This value, y = –2, is an extraneous root.

(NB: it's often the case that an extraneous root will make the two sides equal to values equal in absolute value and opposite in sign.)

Thus, the equation given in Statement #1 has only one solution, y = 4, so this equation provides a definitive answer to the prompt question. This statement, alone and by itself, is sufficient.

_________________
Kudos if you like my post
General Discussion
Intern
Intern
avatar
Joined: 26 May 2016
Posts: 39
Location: India
Concentration: Strategy, Technology
Schools: IIMA (A)
GMAT 1: 650 Q49 V32
GPA: 3.65
WE: Information Technology (Computer Software)
Re: What is the value of y?  [#permalink]

Show Tags

New post 24 Jun 2016, 21:02
anurag16 wrote:
Yes the ans is A... This is a brilliant question from Magoosh... Below is the OE..


Using a tried and true DS strategy, start with the easier statement, Statement #2.

Statement #2:

(y – 4)(y + 2) = 0

y = +4 or y = –2

Since there are two values of y, this statement, alone and by itself, is not sufficient.

Statement #1:

This is an equation with a radical. The radical is already isolated, so square both sides.

(3y – 1)2 = 8y2 – 4y + 9

9y2 – 6y + 1 = 8y2 – 4y + 9

y2 – 2y – 8 = 0

Lo and behold! We have arrived at the same equation we found in Statement #2, with solutions y = +4 or y = –2. The naïve conclusion would be—this statement says exactly the same thing as the other. That's incorrect, though, because we don't know whether both of these values are valid solutions, or whether one or more is an extraneous root. We need to test this in the original equation.

Test y = +4 on equation 3y-1=√(8y^2-4y+9)
LHS=RHS

Test y = –2 on equation 3y-1=√(8y^2-4y+9)

The LHS and RHS are not equal, so this does not check! This value, y = –2, is an extraneous root.

(NB: it's often the case that an extraneous root will make the two sides equal to values equal in absolute value and opposite in sign.)

Thus, the equation given in Statement #1 has only one solution, y = 4, so this equation provides a definitive answer to the prompt question. This statement, alone and by itself, is sufficient.


Hi ,

Given : y=-2

placing the values you get : -7 = sqrt(49) , this is possible

y = 4 you get 11 = sqrt(121)

So how can statement A be sufficient ??
_________________
Best Regards,
Ashwini

Kudos if it was helpful :)
Intern
Intern
avatar
B
Joined: 25 Jan 2016
Posts: 9
Re: What is the value of y?  [#permalink]

Show Tags

New post 24 Jun 2016, 21:50
anurag16 wrote:
Yes the ans is A... This is a brilliant question from Magoosh... Below is the OE..


Using a tried and true DS strategy, start with the easier statement, Statement #2.

Statement #2:

(y – 4)(y + 2) = 0

y = +4 or y = –2

Since there are two values of y, this statement, alone and by itself, is not sufficient.

Statement #1:

This is an equation with a radical. The radical is already isolated, so square both sides.

(3y – 1)2 = 8y2 – 4y + 9

9y2 – 6y + 1 = 8y2 – 4y + 9

y2 – 2y – 8 = 0

Lo and behold! We have arrived at the same equation we found in Statement #2, with solutions y = +4 or y = –2. The naïve conclusion would be—this statement says exactly the same thing as the other. That's incorrect, though, because we don't know whether both of these values are valid solutions, or whether one or more is an extraneous root. We need to test this in the original equation.

Test y = +4 on equation 3y-1=√(8y^2-4y+9)
LHS=RHS

Test y = –2 on equation 3y-1=√(8y^2-4y+9)

The LHS and RHS are not equal, so this does not check! This value, y = –2, is an extraneous root.

(NB: it's often the case that an extraneous root will make the two sides equal to values equal in absolute value and opposite in sign.)

Thus, the equation given in Statement #1 has only one solution, y = 4, so this equation provides a definitive answer to the prompt question. This statement, alone and by itself, is sufficient.

How can you say that for value y=4
11 = √121 since the value can be +11 or -11 for √121

Moreover there are other values for y which satisfy the equation like 7 = √ 49.
So how can value for y be uniquely determined by both the equations put together hence
E. Both statements are not sufficient.

Sent from my A114 using GMAT Club Forum mobile app
Current Student
User avatar
G
Joined: 04 Feb 2014
Posts: 216
Location: India
Concentration: General Management, Entrepreneurship
GPA: 3
WE: Project Management (Manufacturing)
GMAT ToolKit User
Re: What is the value of y?  [#permalink]

Show Tags

New post Updated on: 24 Jun 2016, 23:04
ashwini86 wrote:
anurag16 wrote:
Yes the ans is A... This is a brilliant question from Magoosh... Below is the OE..


Using a tried and true DS strategy, start with the easier statement, Statement #2.

Statement #2:

(y – 4)(y + 2) = 0

y = +4 or y = –2

Since there are two values of y, this statement, alone and by itself, is not sufficient.

Statement #1:

This is an equation with a radical. The radical is already isolated, so square both sides.

(3y – 1)2 = 8y2 – 4y + 9

9y2 – 6y + 1 = 8y2 – 4y + 9

y2 – 2y – 8 = 0

Lo and behold! We have arrived at the same equation we found in Statement #2, with solutions y = +4 or y = –2. The naïve conclusion would be—this statement says exactly the same thing as the other. That's incorrect, though, because we don't know whether both of these values are valid solutions, or whether one or more is an extraneous root. We need to test this in the original equation.

Test y = +4 on equation 3y-1=√(8y^2-4y+9)
LHS=RHS

Test y = –2 on equation 3y-1=√(8y^2-4y+9)

The LHS and RHS are not equal, so this does not check! This value, y = –2, is an extraneous root.

(NB: it's often the case that an extraneous root will make the two sides equal to values equal in absolute value and opposite in sign.)

Thus, the equation given in Statement #1 has only one solution, y = 4, so this equation provides a definitive answer to the prompt question. This statement, alone and by itself, is sufficient.


Hi ,

Given : y=-2

placing the values you get : -7 = sqrt(49) , this is possible

y = 4 you get 11 = sqrt(121)

So how can statement A be sufficient ??



Hi ashwini86,
y=-2 will give -7 on LHS and 7 on RHS
As the LHS will not be equal to RHS so -2 will not be a valid root.
So it will have only one root i.e. only one value of y=4
_________________
Kudos if you like my post

Originally posted by GGMU on 24 Jun 2016, 21:52.
Last edited by GGMU on 24 Jun 2016, 23:04, edited 1 time in total.
Intern
Intern
avatar
B
Joined: 25 Jan 2016
Posts: 9
Re: What is the value of y?  [#permalink]

Show Tags

New post 24 Jun 2016, 22:55
anurag16 wrote:
ashwini86 wrote:
anurag16 wrote:
Yes the ans is A... This is a brilliant question from Magoosh... Below is the OE..


Using a tried and true DS strategy, start with the easier statement, Statement #2.

Statement #2:

(y – 4)(y + 2) = 0

y = +4 or y = –2

Since there are two values of y, this statement, alone and by itself, is not sufficient.

Statement #1:

This is an equation with a radical. The radical is already isolated, so square both sides.

(3y – 1)2 = 8y2 – 4y + 9

9y2 – 6y + 1 = 8y2 – 4y + 9

y2 – 2y – 8 = 0

Lo and behold! We have arrived at the same equation we found in Statement #2, with solutions y = +4 or y = –2. The naïve conclusion would be—this statement says exactly the same thing as the other. That's incorrect, though, because we don't know whether both of these values are valid solutions, or whether one or more is an extraneous root. We need to test this in the original equation.

Test y = +4 on equation 3y-1=√(8y^2-4y+9)
LHS=RHS

Test y = –2 on equation 3y-1=√(8y^2-4y+9)

The LHS and RHS are not equal, so this does not check! This value, y = –2, is an extraneous root.

(NB: it's often the case that an extraneous root will make the two sides equal to values equal in absolute value and opposite in sign.)

Thus, the equation given in Statement #1 has only one solution, y = 4, so this equation provides a definitive answer to the prompt question. This statement, alone and by itself, is sufficient.


Hi ,

Given : y=-2

placing the values you get : -7 = sqrt(49) , this is possible

y = 4 you get 11 = sqrt(121)

So how can statement A be sufficient ??



Hi ashwini86,
y=-2 will give -7 on LHS and 7 on RHS
As the LHS will not be equal to RHS so -2 will not be a valid root.
So it will have only one root i.e. only one value of y=4

Hi anurag 16,
Is the sqrt of a perfect square treated as positive value by default?
If yes then A can be the solution
ashwini86 wrote:
anurag16 wrote:
Yes the ans is A... This is a brilliant question from Magoosh... Below is the OE..


Using a tried and true DS strategy, start with the easier statement, Statement #2.

Statement #2:

(y – 4)(y + 2) = 0

y = +4 or y = –2

Since there are two values of y, this statement, alone and by itself, is not sufficient.

Statement #1:

This is an equation with a radical. The radical is already isolated, so square both sides.

(3y – 1)2 = 8y2 – 4y + 9

9y2 – 6y + 1 = 8y2 – 4y + 9

y2 – 2y – 8 = 0

Lo and behold! We have arrived at the same equation we found in Statement #2, with solutions y = +4 or y = –2. The naïve conclusion would be—this statement says exactly the same thing as the other. That's incorrect, though, because we don't know whether both of these values are valid solutions, or whether one or more is an extraneous root. We need to test this in the original equation.

Test y = +4 on equation 3y-1=√(8y^2-4y+9)
LHS=RHS

Test y = –2 on equation 3y-1=√(8y^2-4y+9)

The LHS and RHS are not equal, so this does not check! This value, y = –2, is an extraneous root.

(NB: it's often the case that an extraneous root will make the two sides equal to values equal in absolute value and opposite in sign.)

Thus, the equation given in Statement #1 has only one solution, y = 4, so this equation provides a definitive answer to the prompt question. This statement, alone and by itself, is sufficient.


Hi ,

Given : y=-2

placing the values you get : -7 = sqrt(49) , this is possible

y = 4 you get 11 = sqrt(121)

So how can statement A be sufficient ??



Sent from my A114 using GMAT Club Forum mobile app
Current Student
User avatar
G
Joined: 04 Feb 2014
Posts: 216
Location: India
Concentration: General Management, Entrepreneurship
GPA: 3
WE: Project Management (Manufacturing)
GMAT ToolKit User
Re: What is the value of y?  [#permalink]

Show Tags

New post 24 Jun 2016, 23:01
2
Hi ShreyasCM
Suppose we have x^2=49 we will have two roots +7 and -7 because both these values will satisfy the equation.
However, if we talk about only sqrt49 as an individual identity we will only get +7 as the solution.

I hope it's clear now why we A option is sufficient.
_________________
Kudos if you like my post
VP
VP
avatar
P
Joined: 12 Dec 2016
Posts: 1492
Location: United States
GMAT 1: 700 Q49 V33
GPA: 3.64
GMAT ToolKit User
Re: What is the value of y?  [#permalink]

Show Tags

New post 07 Sep 2017, 01:02
well, there is a trap of y >= 1/3, right?
Senior Manager
Senior Manager
User avatar
P
Joined: 29 Jun 2017
Posts: 424
GPA: 4
WE: Engineering (Transportation)
GMAT ToolKit User Reviews Badge
Re: What is the value of y?  [#permalink]

Show Tags

New post 07 Sep 2017, 01:20
1
1)
(3y-1)= √(8y^2-4y+9)
squaring both sides
9y^2+1-6y = 8y^2-4y+9
y^2-2y-8=0
(y-4)(y+2) =0
y=4 or y=-2
but y= -2 not possible as RHS √ (8y^2-4y+9) will always be positive, but y=-2 makes LHS negative
so single deifinite ans y=4. so A or D

2) y^2-2y-8=0
(y-4)(y+2) =0
y=4 or y=-2
Multiple Ans => D eliminated

A is the Ans
_________________
Give Kudos for correct answer and/or if you like the solution.
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58453
Re: What is the value of y?  [#permalink]

Show Tags

New post 07 Sep 2017, 02:02
1
Senior Manager
Senior Manager
User avatar
P
Joined: 29 Jun 2017
Posts: 424
GPA: 4
WE: Engineering (Transportation)
GMAT ToolKit User Reviews Badge
Re: What is the value of y?  [#permalink]

Show Tags

New post 07 Sep 2017, 05:10
chesstitans wrote:
well, there is a trap of y >= 1/3, right?



chesstitans

You can see my solution, No need to assume y>=1/3
just whatever value of y you calculate should make LHS positive.

Hope you find this useful.
_________________
Give Kudos for correct answer and/or if you like the solution.
Manager
Manager
avatar
B
Joined: 14 Sep 2016
Posts: 126
Re: What is the value of y?  [#permalink]

Show Tags

New post 04 Oct 2017, 10:53
sahilvijay wrote:
1)
(3y-1)= √(8y^2-4y+9)
squaring both sides
9y^2+1-6y = 8y^2-4y+9
y^2-2y-8=0
(y-4)(y+2) =0
y=4 or y=-2
but y= -2 not possible as RHS √ (8y^2-4y+9) will always be positive, but y=-2 makes LHS negative
so single deifinite ans y=4. so A or D

2) y^2-2y-8=0
(y-4)(y+2) =0
y=4 or y=-2
Multiple Ans => D eliminated

A is the Ans



can you explain why the RHS will always be positive ?
Senior Manager
Senior Manager
User avatar
P
Joined: 29 Jun 2017
Posts: 424
GPA: 4
WE: Engineering (Transportation)
GMAT ToolKit User Reviews Badge
Re: What is the value of y?  [#permalink]

Show Tags

New post 04 Oct 2017, 11:31
Kunal - RHS HAS A square root- which is always positive

Posted from my mobile device
_________________
Give Kudos for correct answer and/or if you like the solution.
Intern
Intern
avatar
B
Joined: 22 Apr 2019
Posts: 3
What is the value of y?  [#permalink]

Show Tags

New post 30 May 2019, 14:39
why can't we plug in 4 and -2 in statement 2 to check which one is correct as we did in statement 1?

GGMU wrote:
Yes the ans is A... This is a brilliant question from Magoosh... Below is the OE..


Using a tried and true DS strategy, start with the easier statement, Statement #2.

Statement #2:

(y – 4)(y + 2) = 0

y = +4 or y = –2

Since there are two values of y, this statement, alone and by itself, is not sufficient.

Statement #1:

This is an equation with a radical. The radical is already isolated, so square both sides.

(3y – 1)2 = 8y2 – 4y + 9

9y2 – 6y + 1 = 8y2 – 4y + 9

y2 – 2y – 8 = 0

Lo and behold! We have arrived at the same equation we found in Statement #2, with solutions y = +4 or y = –2. The naïve conclusion would be—this statement says exactly the same thing as the other. That's incorrect, though, because we don't know whether both of these values are valid solutions, or whether one or more is an extraneous root. We need to test this in the original equation.

Test y = +4 on equation 3y-1=√(8y^2-4y+9)
LHS=RHS

Test y = –2 on equation 3y-1=√(8y^2-4y+9)

The LHS and RHS are not equal, so this does not check! This value, y = –2, is an extraneous root.

(NB: it's often the case that an extraneous root will make the two sides equal to values equal in absolute value and opposite in sign.)

Thus, the equation given in Statement #1 has only one solution, y = 4, so this equation provides a definitive answer to the prompt question. This statement, alone and by itself, is sufficient.
Intern
Intern
avatar
Joined: 22 Jul 2019
Posts: 5
Re: What is the value of y?  [#permalink]

Show Tags

New post 31 Jul 2019, 07:50
square of anything(X) that comes out will be mode of X. so, needs to positive. can't be negative
Director
Director
avatar
P
Joined: 24 Nov 2016
Posts: 611
Location: United States
CAT Tests
Re: What is the value of y?  [#permalink]

Show Tags

New post 11 Sep 2019, 06:01
GGMU wrote:
What is the value of y?

(1) \(3y-1=\sqrt{(8y^2-4y+9)}\)
(2) \(y^2–2y–8 = 0\)


(1) \(3y-1=\sqrt{(8y^2-4y+9)}\): sufic.
\((3y-1)^2=8y^2-4y+9…y^2–2y–8=0…(y-4)(y+2)=0…y=(4,-2)\)
\(\sqrt{(8y^2-4y+9)}≥0…3y-1≥0…3y≥1…y≥1/3…y=4\)

(2) \(y^2–2y–8 = 0…(y-4)(y+2)=0…y=(4,-2)\): insufic.

Answer (A)
GMAT Club Bot
Re: What is the value of y?   [#permalink] 11 Sep 2019, 06:01
Display posts from previous: Sort by

What is the value of y?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne