Last visit was: 19 Nov 2025, 13:07 It is currently 19 Nov 2025, 13:07
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
605-655 Level|   Combinations|                     
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,346
 [380]
10
Kudos
Add Kudos
370
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,346
 [101]
28
Kudos
Add Kudos
73
Bookmarks
Bookmark this Post
User avatar
WoundedTiger
Joined: 25 Apr 2012
Last visit: 25 Sep 2024
Posts: 521
Own Kudos:
2,534
 [84]
Given Kudos: 740
Location: India
GPA: 3.21
WE:Business Development (Other)
Products:
Posts: 521
Kudos: 2,534
 [84]
42
Kudos
Add Kudos
42
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,346
 [49]
16
Kudos
Add Kudos
33
Bookmarks
Bookmark this Post
General Discussion
User avatar
Donnie84
Joined: 04 Jan 2014
Last visit: 25 Jun 2025
Posts: 496
Own Kudos:
268
 [20]
Given Kudos: 15
GMAT 1: 660 Q48 V32
GMAT 2: 630 Q48 V28
GMAT 3: 680 Q48 V35
GMAT 3: 680 Q48 V35
Posts: 496
Kudos: 268
 [20]
13
Kudos
Add Kudos
6
Bookmarks
Bookmark this Post
Let the colors be n. We need to find the min value of n for which nC2 >= 12.

Using answer choices, if n = 5; 5C2 = 10 so we are short by 2.
If n = 6, 6C2 = 15. Good!

Answer (C).
User avatar
gdediegoi
Joined: 26 Feb 2012
Last visit: 11 Dec 2019
Posts: 12
Own Kudos:
31
 [9]
Concentration: Strategy, International Business
GMAT 1: 640 Q49 V29
GMAT 1: 640 Q49 V29
Posts: 12
Kudos: 31
 [9]
5
Kudos
Add Kudos
4
Bookmarks
Bookmark this Post
Bunuel


A company that ships boxes to a total of 12 distribution centers uses color coding to identify each center. If either a single color or a pair of two different colors is chosen to represent each center and if each center is uniquely represented by that choice of one or two colors, what is the minimum number of colors needed for the coding? (Assume that the order of the colors in a pair does not matter.)

(A) 4
(B) 5
(C) 6
(D) 12
(E) 24

The statement says a single color or a pair of two different colors is chosen to represent each center.
Hence, the number of combinations have to be greater or equal than 12:

\(nC1 + nC2 >= 12\)

Where:

\(nC1 = n\)

\(nC2 = \frac{n*(n-1)}{2}\)

So:

\(nC1 + nC2 = n+\frac{n*(n-1)}{2} >= 12\)

\(\frac{2n+n*(n-1)}{2} >= 12\)

\(2n+n*(n-1) >= 24\)

\(n2+n >= 24\)

We can now pick values for n, which will be faster than solving:

If n=4,

\(n2+n = 20 < 24\)

If n=5,

\(n2+n = 29 >= 24\)

Answer: B (n=5)

For those willing to solve for n:

\(n^2+n >= 24\)

\(n^2+n -24 >0\)

Solving for n,

\(\frac{-1+-\sqrt{1+96}}{2}\)

\(\frac{-1+-\sqrt{97}}{2}\)


We don't really need to solve the square root:

- Negative option of the square root is not possible
- The positive option can be approximated by

\(\frac{1+sqroot(100)}{2} \approx 5\)

(but slightly less than 5)

Given that the inequality is:

\(n^2+n -24 >0\)

Any value of n>=(slightly less than 5) will make the inequality positive.

Hence n=5

Answer: B (n=5)
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Can anyone tell me when we use n^2 and when we use n+nC2 ????

In this color question we use n+nC2 >= 12

In integer questions we use n^2>=15 ....
User avatar
EMPOWERgmatRichC
User avatar
Major Poster
Joined: 19 Dec 2014
Last visit: 31 Dec 2023
Posts: 21,784
Own Kudos:
12,807
 [13]
Given Kudos: 450
Status:GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Expert
Expert reply
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Posts: 21,784
Kudos: 12,807
 [13]
5
Kudos
Add Kudos
8
Bookmarks
Bookmark this Post
Hi gmathopeful90,

The "restrictions" in the question are what dictate the math.

Consider these possible scenarios:

1) You have 5 different colors to choose from and two different rooms to paint. You can use the same color in both rooms. How many different color combinations are there for the two rooms?

Here, the first room could be 5 different colors and the second room could be 5 different colors, so (5)(5) = 5^2 = 25 options.

2) You have 5 different colors to choose from and two different rooms to paint. You CANNOT use the same color in both rooms. How many different color combinations are there for the two rooms?

Here, the first room could be 5 different colors; once you assign that first color, the second room could only be 4 different colors, so (5)(4) = 20 options.

3) You have 5 different colors to choose from. How many different 1-color and 2-color codes can you form with the following restrictions: the 2-color codes must use 2 DIFFERENT colors and the order of the colors does not matter (so blue-green is the SAME code as green-blue)?

Here, you start with the 5 different 1-color codes, then 5c2 different 2-color codes = 5 + 10 = 15 codes.

GMAT assassins aren't born, they're made,
Rich
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Thanks for the reply :)

Do you mean in questions where we assume order of colors in cominations matters, we can use 5*4..
But where color doesn't matter, we use 5C2 ???

This explains stuff for me :)
User avatar
EMPOWERgmatRichC
User avatar
Major Poster
Joined: 19 Dec 2014
Last visit: 31 Dec 2023
Posts: 21,784
Own Kudos:
12,807
 [3]
Given Kudos: 450
Status:GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Expert
Expert reply
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Posts: 21,784
Kudos: 12,807
 [3]
1
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
Hi gmathopeful90,

You've hit on THE key difference between Permutation and Combination questions: does the order MATTER or not.

IF you're putting things in order (the word "arrange" or "arrangements" often shows up in these types of questions), then you have to keep track of the number of options at each "step" and standard multiplication is involved.

IF you're picking combinations of things (the word "combination" is the common word in these questions), then the order of the items does NOT matter and you have to use the Combination Formula.

One of the interesting "design elements" of Official GMAT questions is that you can use either of the above approaches on certain types of prompts - you just have to be careful about how you set up the math (and you have to be really organized with your work).

GMAT assassins aren't born, they're made,
Rich
User avatar
DJ1986
Joined: 05 Jul 2015
Last visit: 16 May 2016
Posts: 51
Own Kudos:
227
 [10]
Given Kudos: 3
Concentration: Real Estate, International Business
GMAT 1: 600 Q33 V40
GPA: 3.3
GMAT 1: 600 Q33 V40
Posts: 51
Kudos: 227
 [10]
6
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
I labeled the colors alphabetically and wrote them out

A
B
AB
C
CA,CB,
D
DA,DB,DC 4 Colors (ABCD) = 10 combinations so 1 more color will give more than 12 combinations.
User avatar
EMPOWERgmatRichC
User avatar
Major Poster
Joined: 19 Dec 2014
Last visit: 31 Dec 2023
Posts: 21,784
Own Kudos:
12,807
 [2]
Given Kudos: 450
Status:GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Expert
Expert reply
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Posts: 21,784
Kudos: 12,807
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi DJ1986,

The 'brute force' approach that you used is PERFECT for these types of questions. When the answer choices are relatively small, it can sometimes be fastest/easiest to just put pen-to-pad and 'map out' all of the possibilities. In that way, you're not trying to make the solution overly-complicated and you're not starting at the screen (hoping that some idea will come to you). You'll likely find that you can take this approach on a few questions in the Quant section on Test Day, so don't be shy about using it (and practicing with it in mind).

GMAT assassins aren't born, they're made,
Rich
User avatar
ameyaprabhu
Joined: 28 Apr 2016
Last visit: 09 Aug 2017
Posts: 68
Own Kudos:
Given Kudos: 79
Posts: 68
Kudos: 34
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I am confused with the line 'order doesn't matter'.

Does it mean BR = RB or BR =/ to RB?.


ij78cp
I tried to do it with writing the possibilities out:

B(Blue) R(Red) Y(Yellow) P(Pink)

B
BR
RB
R
Y
YR
YB
RY
BY
P
PR
RP
PB
BP
PY
YP

I already reach 16 different combinations with only 4 colours, but the OA is 5? what´s my mistake?


EDIT:

Just figured that the ordering does not count as 2 different orders.. therefore, we need 5 colours.. thanks anyway
User avatar
EMPOWERgmatRichC
User avatar
Major Poster
Joined: 19 Dec 2014
Last visit: 31 Dec 2023
Posts: 21,784
Own Kudos:
12,807
 [1]
Given Kudos: 450
Status:GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Expert
Expert reply
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Posts: 21,784
Kudos: 12,807
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi ameyaprabhu,

When the order doesn't matter, RB and BR are the SAME option (so you can't count it twice, you can only count it once). In these sorts of questions, it can often be fastest to just 'list out' the possibilities (as opposed to doing lots of complex calculations).

GMAT assassins aren't born, they're made,
Rich
avatar
matteogr
Joined: 07 Apr 2017
Last visit: 10 Jun 2017
Posts: 3
Own Kudos:
Given Kudos: 70
Posts: 3
Kudos: 2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
chintzzz
A company that ships boxes to a total of 12 distribution centers uses color coding to identify each center. If either a single color or a pair of two different colors is chosen to represent each center and if each center is uniquely represented by that choice of one or two colors, what is the minimum number of colors needed for the coding? (assume that the order of colors in a pair does not matter)
A)4
B)5
C)6
D)12
E)24

You can solve by trial and error or use algebra.

Let # of colors needed be \(n\), then it must be true that \(n+C^2_n\geq{12}\) (\(C^2_n\) - # of ways to choose the pair of different colors from \(n\) colors when order doesn't matter) --> \(n+\frac{n(n-1)}{2}\geq{12}\) --> \(2n+n(n-1)\geq{24}\) --> \(n(n+1)\geq{24}\) --> as \(n\) is an integer (it represents # of colors) \(n\geq{5}\) --> \(n_{min}=5\).

Answer: B.

Hope it's clear.


Could you please explain me how you get [fraction]n(n-1)/2 from C^2_n? Shouldn't it be [fraction]n!/k!(n-k)! ?
Thanks
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,346
 [2]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,346
 [2]
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
matteogr
Bunuel
chintzzz
A company that ships boxes to a total of 12 distribution centers uses color coding to identify each center. If either a single color or a pair of two different colors is chosen to represent each center and if each center is uniquely represented by that choice of one or two colors, what is the minimum number of colors needed for the coding? (assume that the order of colors in a pair does not matter)
A)4
B)5
C)6
D)12
E)24

You can solve by trial and error or use algebra.

Let # of colors needed be \(n\), then it must be true that \(n+C^2_n\geq{12}\) (\(C^2_n\) - # of ways to choose the pair of different colors from \(n\) colors when order doesn't matter) --> \(n+\frac{n(n-1)}{2}\geq{12}\) --> \(2n+n(n-1)\geq{24}\) --> \(n(n+1)\geq{24}\) --> as \(n\) is an integer (it represents # of colors) \(n\geq{5}\) --> \(n_{min}=5\).

Answer: B.

Hope it's clear.


Could you please explain me how you get n(n-1)/2 from C^2_n? Shouldn't it be n!/k!(n-k)! ?
Thanks

\(C^2_n=\frac{n!}{(n-2)!*2!}=\frac{(n-2)!*(n-1)*n}{(n-2)!*2!}=\frac{(n-1)*n}{2}\).

Hope it's clear.
User avatar
SVaidyaraman
Joined: 17 Dec 2012
Last visit: 11 Jul 2025
Posts: 576
Own Kudos:
1,795
 [9]
Given Kudos: 20
Location: India
Expert
Expert reply
Posts: 576
Kudos: 1,795
 [9]
7
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
chintzzz
A company that ships boxes to a total of 12 distribution centers uses color coding to identify each center. If either a single color or a pair of two different colors is chosen to represent each center and if each center is uniquely represented by that choice of one or two colors, what is the minimum number of colors needed for the coding? (assume that the order of colors in a pair does not matter)

A. 4
B. 5
C. 6
D. 12
E. 24
1. Solving a simple case and then generalizing would be easy for this problem.
2. Take 2 colors Red and Blue. These two can be used in the following ways R, B, RB. i.e, 2+2C2. It can represent only 3 centers
3. Take 3 colors R, B, G. These can represent 3 +3c2=6 centers
4. Four colors can represent 4+4C2= 10 centers
5 colors can represent 5+5C2=15 centers

So we see a minimum of 5 colors are needed
User avatar
JeffTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 04 Mar 2011
Last visit: 05 Jan 2024
Posts: 2,977
Own Kudos:
8,390
 [10]
Given Kudos: 1,646
Status:Head GMAT Instructor
Affiliations: Target Test Prep
Expert
Expert reply
Posts: 2,977
Kudos: 8,390
 [10]
5
Kudos
Add Kudos
5
Bookmarks
Bookmark this Post
chintzzz
A company that ships boxes to a total of 12 distribution centers uses color coding to identify each center. If either a single color or a pair of two different colors is chosen to represent each center and if each center is uniquely represented by that choice of one or two colors, what is the minimum number of colors needed for the coding? (assume that the order of colors in a pair does not matter)

A. 4
B. 5
C. 6
D. 12
E. 24

Since we have only 12 distribution centers, we know we will need fewer than 12 different colors to identify them.

Let’s say we have 4 different colors; then 4C1 = 4 centers can be identified by one color, and 4C2 = 6 centers can be identified by two different colors. So a total of 4 + 6 = 10 centers can be identified.

We see that if we have only 4 different colors, we don’t have enough ID codes to assign to the 12 centers. Therefore, we need one more color.

If we have 5 different colors, then 5C1 = 5 centers can be identified by one color, and 5C2 = 10 centers can be identified by two different colors. So a total of 5 + 10 = 15 centers can be identified.

We see that if we have 5 different colors, we have more than enough ID codes to assign to the 12 centers.

Answer: B
User avatar
GMATYoda
Joined: 24 Sep 2018
Last visit: 18 Jan 2021
Posts: 103
Own Kudos:
Given Kudos: 14
Posts: 103
Kudos: 190
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Quote:
This is a classic “reverse-engineering” combinatorics question. Instead of asking you to calculate the number of arrangements given certain constraints for N and K, the question gives you the target number of color arrangements and you must figure out the number of colors needed to reach that target number.

The first order of business is to try to determine whether this is an exponential, permutation, or combination, since that will affect the equation you use. Since the question states explicitly that order does not matter, you know you will be applying the combinations formula.

C=N!/K!∗(N−K)!
Reverse-engineering questions generally require you to plug in answer choices to find the one that works. You need to find an answer that sums to at least 12 arrangements, since you need to code 12 separate distribution centers. You need to do a calculation for one letter (which does not really need a formula!) and for two letters as shown below - when the smallest value reaches at least 12 you have the right answer. Let’s start with “B”. Plugging in 5 for N, we see that:

A=5!/1!∗(5−1)! + 5!/2!∗(5−2)! = 5+10 = 15

With N = 5, you have more than enough for the 12 distribution centers, but only just barely; it seems unlikely that dropping down another number would still keep it above the minimum. However, just in case, here is what it would look like if N = 4 (answer choice “A”):

A=4!/1!∗(4−1)! + 4!/2!∗(4−2)! = 4+6 = 10

Answer choice “A” drops the value below the minimum possible (we need codes for 12 distribution centers). Therefore, the minimum value for N is N = 5, and the answer is “B”.
User avatar
raghuvira
Joined: 16 Apr 2019
Last visit: 24 Mar 2024
Posts: 3
Own Kudos:
4
 [3]
Given Kudos: 14
Posts: 3
Kudos: 4
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
For those like gmathopeful90 who may need formula usage criterion for n^2, I found this:


Ordered?-----Repetition? --- Formula


Yes (permutation)----No---------P(n,r)=\(\frac{n!}{(n−r)!}\)

No (combination)----No---------C(n,r)=\(\frac{n!}{r!(n−r)!}\)

Yes (permutation)----Yes--------P(n,r)\(n^r\)

No (combination)----Yes--------C(n+r−1,r)=\(\frac{(n+r−1)!}{r!(n−1)!}\)
 1   2   
Moderators:
Math Expert
105390 posts
Tuck School Moderator
805 posts