vaishnogmat
A dessert recipe calls for 50% melted chocolate and 50% raspberry puree to make a particular sauce. A chef accidentally makes 15 cups of the sauce with 40% melted chocolate and 60% raspberry puree instead. How many cups of the sauce does he need to remove and replace with pure melted chocolate to make the sauce the proper 50% of each?
A. 1.5
B. 2.5
C. 3
D. 4.5
E. 5
\(?\,\,\, = \,\,\,x = \# \,\,{\rm{out}}\,\,\underline {{\rm{sauce}}} \,\,{\rm{cups}}\,\, = \,\,\# \,\,{\rm{in}}\,\,\underline {{\rm{100\% }}\,\,{\rm{choco}}} \,\,{\rm{cups}}\)
\(\matrix{\\
{{\rm{real}} \to {\rm{ideal}}} \cr \\
{15\,\,{\rm{cups}}} \cr \\
\\
} \,\,\,\left\{ \matrix{\\
\,{\rm{choco}}\,:\,\,{2 \over 5}\left( {15} \right)\,\,{\rm{cups}} - x \cdot {2 \over 5}\,\,{\rm{cups}} + x\,\,{\rm{cups}}\,\,\,\,\, = \,\,\,\,{{2.5} \over 5}\left( {15} \right)\,\,{\rm{cups}} \hfill \cr \\
\,{\rm{rasp}}\,:\,\,{3 \over 5}\left( {15} \right)\,\,{\rm{cups}} - x \cdot {3 \over 5}\,\,{\rm{cups}} + 0\,\,{\rm{cups}}\,\,\,\,\, = \,\,\,\,{{2.5} \over 5}\left( {15} \right)\,\,{\rm{cups}} \hfill \cr} \right.\)
\({3 \over 5}\left( {15} \right)\,\,{\rm{cups}} - x \cdot {3 \over 5}\,\,{\rm{cups}}\,\,\,\,\, = \,\,\,\,{{2.5} \over 5}\left( {15} \right)\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,{3 \over 5}x = {{0.5} \over 5}\left( {15} \right)\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,x = 2.5\)
\(\left[ {\,{2 \over 5}\left( {15} \right)\,\,{\rm{cups}} - x \cdot {2 \over 5}\,\,{\rm{cups}} + x\,\,{\rm{cups}}\,\,\,\,\, = \,\,\,\,{{2.5} \over 5}\left( {15} \right)\,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,{3 \over 5}x = {{0.5} \over 5}\left( {15} \right)\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,x = 2.5} \right]\)
The correct answer is (B).
We follow the notations and rationale taught in the
GMATH method.
Regards,
Fabio.