Apr 27 07:00 AM PDT  09:00 AM PDT Attend this webinar and master GMAT SC in 10 days by learning how meaning and logic can help you tackle 700+ level SC questions with ease. Apr 28 07:00 AM PDT  09:00 AM PDT Attend this webinar to learn a structured approach to solve 700+ Number Properties question in less than 2 minutes. Apr 29 08:00 AM PDT  09:00 AM PDT Join a free live webinar and learn timemanagement tactics that will guarantee you answer all questions, in all sections, on time. Save your spot today! Apr 30 10:00 PM PDT  11:00 PM PDT Enter to win 3 full months of access to EMPOWERgmat's groundbreaking GMAT prep course. Prize includes all 6 GMAT Official Practice exams and access to the GMAT Club Test & Quiz Bank Pack. May 01 10:00 PM PDT  11:00 PM PDT Target Test Prep is kicking off spring with a fresh giveaway contest! For a limited time, you have a chance to win 4 months of full, FREE access to our 5star rated GMAT Quant course.
Author 
Message 
TAGS:

Hide Tags

Math Expert
Joined: 02 Aug 2009
Posts: 7594

Re: A dessert recipe calls for 50% melted chocolate and 50% rasp
[#permalink]
Show Tags
07 Jan 2016, 07:03
vaishnogmat wrote: A dessert recipe calls for 50% melted chocolate and 50% raspberry puree to make a particular sauce. A chef accidentally makes 15 cups of the sauce with 40% melted chocolate and 60% raspberry puree instead. How many cups of the sauce does he need to remove and replace with pure melted chocolate to make the sauce the proper 50% of each?
A. 1.5 B. 2.5 C. 3 D. 4.5 E. 5 Hi all, another approach to this Q, which could be slightly easier and less time consuming is.. 15 cups with 40% of choc will mean there are 6 cups of choc.. what was it supposed to be.. 50% or .5*15=7.5 cups.. this is 1.5 cups short..now he is to make up for this 1.5 cups.. if we take out one cup, which includes .4 choc and add one cup of pure choc, the final effect is addn of .6 cup of choc..But we have to make up for 1.5 cups.. if .6 cup requires replacement of one cup,.. 1.5 cup will require 1/.6 *1.5= 2.5 cups..ans B
_________________



Intern
Joined: 22 Dec 2015
Posts: 39

Re: A dessert recipe calls for 50% melted chocolate and 50% rasp
[#permalink]
Show Tags
20 May 2016, 11:19
Can someone please explain if the quantity of Raspberry in the original (faulty) and the final mixture will remain the same? Since we are only adding Chocolate?



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 9149
Location: Pune, India

Re: A dessert recipe calls for 50% melted chocolate and 50% rasp
[#permalink]
Show Tags
21 May 2016, 00:31
powellmittra wrote: Can someone please explain if the quantity of Raspberry in the original (faulty) and the final mixture will remain the same? Since we are only adding Chocolate? No. He is going to remove the sauce (mix of chocolate and raspberry) and then add more chocolate to it. So the initial amount of raspberry is not the same as the final amount. But after the removal process, he adds only chocolate so yes, in that step, the amount of raspberry does not change. Check here for the complete solution: adessertrecipecallsfor50meltedchocolateand50rasp158248.html#p1376400
_________________
Karishma Veritas Prep GMAT Instructor
Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >



VP
Joined: 07 Dec 2014
Posts: 1179

Re: A dessert recipe calls for 50% melted chocolate and 50% rasp
[#permalink]
Show Tags
21 May 2016, 11:57
let x=number of cups to be removed/replaced 15(.4)x(.4)+x=15(.5) x=2.5 cups



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 9149
Location: Pune, India

Re: A dessert recipe calls for 50% melted chocolate and 50% rasp
[#permalink]
Show Tags
22 May 2016, 22:15
Responding to a pm: Quote: Why does it have to be 50 = 60[(15x)/15] ?
i.e the initial Volume is 15 not 15x?
We assume that he removes x cups. Our formula is based on the concept that amount of raspberry puree does not change in the step. Initial amount = Final amount CiVi = CfVf Think about it: when does the amount of raspberry puree remain same? When you have 15 cups of mix, there is a certain amount of raspberry puree in it. When you remove x cups, the amount of raspberry puree reduces. You have 15  x cups of mix now. Now when you add chocolate, the amount of raspberry puree stays the same. So we are applying the concept of "amount stays same" to the "adding chocolate" step only. Before we add chocolate, we have 15x cups of mix. After we add chocolate, we have 15 cups of mix. Hence, initial volume is 15  x. Does this help?
_________________
Karishma Veritas Prep GMAT Instructor
Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >



Senior SC Moderator
Joined: 14 Nov 2016
Posts: 1329
Location: Malaysia

Re: A dessert recipe calls for 50% melted chocolate and 50% rasp
[#permalink]
Show Tags
17 May 2017, 17:57
vaishnogmat wrote: A dessert recipe calls for 50% melted chocolate and 50% raspberry puree to make a particular sauce. A chef accidentally makes 15 cups of the sauce with 40% melted chocolate and 60% raspberry puree instead. How many cups of the sauce does he need to remove and replace with pure melted chocolate to make the sauce the proper 50% of each?
A. 1.5 B. 2.5 C. 3 D. 4.5 E. 5 We've got 9 cups of raspberry and 6 of chocolate. To fix this, we need to remove 1.5 cups of raspberry. But! We can't take out raspberry by itself. It's already mixed with the chocolate. We can only remove the mix. Mix = 60% raspberry, 40% chocolate Every cup of mix we remove = 0.6 cups raspberry + 0.4 cups chocolate 60% of 1 cup = 0.6 cups So each cup of mix gets us 0.6 cups raspberry 0.6 cups of raspberry * (# of cups of mix) = 1.5 cups of raspberry 0.6 * x = 1.5 x = 2.5 We need 1.5 cups raspberry 0.6 * 2.5 = 1.5 So we need to remove 2.5 cups of mix. Answer : B
_________________
"Be challenged at EVERY MOMENT."“Strength doesn’t come from what you can do. It comes from overcoming the things you once thought you couldn’t.”"Each stage of the journey is crucial to attaining new heights of knowledge."Rules for posting in verbal forum  Please DO NOT post short answer in your post! Advanced Search : https://gmatclub.com/forum/advancedsearch/



Target Test Prep Representative
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 5871
Location: United States (CA)

Re: A dessert recipe calls for 50% melted chocolate and 50% rasp
[#permalink]
Show Tags
22 May 2017, 18:40
vaishnogmat wrote: A dessert recipe calls for 50% melted chocolate and 50% raspberry puree to make a particular sauce. A chef accidentally makes 15 cups of the sauce with 40% melted chocolate and 60% raspberry puree instead. How many cups of the sauce does he need to remove and replace with pure melted chocolate to make the sauce the proper 50% of each?
A. 1.5 B. 2.5 C. 3 D. 4.5 E. 5 We are given that a chef makes 15 cups of sauce with 40% melted chocolate, or 15 x 0.4 = 6 cups of melted chocolate, and 60% raspberry puree, or 0.6 x 15 = 9 cups of raspberry puree. We need to determine how many cups of the sauce he needs to remove and replace with pure melted chocolate to make the sauce 50% of each. In order to have 50% of each, we want 7.5 cups of melted chocolate and 7.5 cups of raspberry puree. We can let n = the number of cups of sauce removed and also the number of cups of pure melted chocolate added. Recall that we have 6 cups of melted chocolate in the sauce (which is 40% of the sauce). If we remove n cups of sauce, we are actually removing 0.4n cups of melted chocolate. Since we are adding back n cups of pure melted chocolate, the number of cups of melted chocolate will increased by n, and we want the end result to be 7.5 cups of melted chocolate. Thus, we can create the following equation to solve for n: 6  0.4n + n = 7.5 0.6n = 1.5 n = 1.5/0.6 = 15/6 = 2.5 Answer: B
_________________
5star rated online GMAT quant self study course See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews



EMPOWERgmat Instructor
Status: GMAT Assassin/CoFounder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 13981
Location: United States (CA)

Re: A dessert recipe calls for 50% melted chocolate and 50% rasp
[#permalink]
Show Tags
12 Jan 2018, 13:36
Hi All, This question can be solved by TESTing THE ANSWERS. To start, we're told that 15 cups of 'sauce' are made up of 40% chocolate and 60% raspberry. This gives us... Total = 15 cups Choc = 40%(15) = 6 cups Rasp = 60%(15) = 9 cups We're told to remove a certain amount of the mixture and replace it with PURE chocolate, so that the mixture becomes a 50/50 chocolate/raspberry mix. In simple terms, we need the total amount of Chocolate to be 7.5 CUPS. We're asked for the number of cups of the mixture that would have to be replaced. Let's TEST THE ANSWERS. While it's mathematically advantageous to TEST answer B or D first, Answer C seems like easier math... IF... we remove 3 cups of sauce, those 3 cups are.... 40%(3) = 1.2 cups Choc 60%(3) = 1.8 cups Rasp The number of cups of Choc can be calculated by using the original number of cups (6), subtracting the amount removed when we remove the sauce (in this case, 1.2), then adding back the pure chocolate that replaces the removed sauce (in this case, 3) = 6  1.2 + 3 = 7.8 cups chocolate. This is TOO MUCH chocolate (we wanted it to be 7.5 cups), but it's fairly close, so we're likely looking for an answer that is CLOSE to 3....Let's TEST Answer B... IF... we remove 2.5 cups of sauce, those 2.5 cups are.... 40%(2.5) = 1 cup Choc 60%(2.5) = 1.5 cups Rasp Choc = 6  1 + 2.5 = 7.5 cups chocolate. This is EXACTLY what we're looking for, so this MUST be the answer. Final Answer: GMAT assassins aren't born, they're made, Rich
_________________
760+: Learn What GMAT Assassins Do to Score at the Highest Levels Contact Rich at: Rich.C@empowergmat.com*****Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!*****
Rich Cohen
CoFounder & GMAT Assassin
Special Offer: Save $75 + GMAT Club Tests Free
Official GMAT Exam Packs + 70 Pt. Improvement Guarantee www.empowergmat.com/



Intern
Joined: 14 Jul 2017
Posts: 6
Location: India
GPA: 4

Re: A dessert recipe calls for 50% melted chocolate and 50% rasp
[#permalink]
Show Tags
11 Nov 2018, 12:34
GMATinsight pls send your explanation



CEO
Status: GMATINSIGHT Tutor
Joined: 08 Jul 2010
Posts: 2908
Location: India
GMAT: INSIGHT
WE: Education (Education)

Re: A dessert recipe calls for 50% melted chocolate and 50% rasp
[#permalink]
Show Tags
12 Nov 2018, 04:30
chanchal1311 wrote: GMATinsight pls send your explanation chanchal1311 Here is my solution Quote: A dessert recipe calls for 50% melted chocolate and 50% raspberry puree to make a particular sauce. A chef accidentally makes 15 cups of the sauce with 40% melted chocolate and 60% raspberry puree instead. How many cups of the sauce does he need to remove and replace with pure melted chocolate to make the sauce the proper 50% of each?
A. 1.5 B. 2.5 C. 3 D. 4.5 E. 5 Current volume = 15 cups Melted chocolate present as of now = 40% of 15 = 6 cups raspberry Puree present as of now = 60% of 15 = 9 cups Let, the volume replaced = x cups raspberry Puree present in x cups = 60% of x = 0.6x cups Since the x cups are being replaced by Pure melted chocolate so the raspberry puree that goes does will NOT come backi.e. Net value of Raspberry puree after replacement of x cups by melted chocolate = 9  0.6x (which should make it 50% of the entire solution as desired)i.e. 9  0.6x = 50% of 15 cups = 7.5 cups i.e. 0.6x = 9  7.5 = 1.5 cups i.e. x = 2.5 cups Answer: Option B
_________________
Prosper!!!GMATinsightBhoopendra Singh and Dr.Sushma Jha email: info@GMATinsight.com I Call us : +919999687183 / 9891333772 Online OneonOne Skype based classes and Classroom Coaching in South and West Delhihttp://www.GMATinsight.com/testimonials.htmlACCESS FREE GMAT TESTS HERE:22 ONLINE FREE (FULL LENGTH) GMAT CAT (PRACTICE TESTS) LINK COLLECTION



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 9149
Location: Pune, India

Re: A dessert recipe calls for 50% melted chocolate and 50% rasp
[#permalink]
Show Tags
06 Dec 2018, 04:19
vaishnogmat wrote: A dessert recipe calls for 50% melted chocolate and 50% raspberry puree to make a particular sauce. A chef accidentally makes 15 cups of the sauce with 40% melted chocolate and 60% raspberry puree instead. How many cups of the sauce does he need to remove and replace with pure melted chocolate to make the sauce the proper 50% of each?
A. 1.5 B. 2.5 C. 3 D. 4.5 E. 5 Quote: How can this problem be solved by concentration method? the amount of raspberry puree remains constant: Ci x Vi = Cf x Vf 3/5 x 15 = 1/2 x (15x) x = 3 what am i missing? Say you remove x cups from the total 15 cups. So volume of sauce before you add more melted chocolate is (15  x) cups. The volume of sauce after you add melted chocolate is 15 cups again. The amount of raspberry puree before and after this step of adding back remains the same. So, Ci x Vi = Cf x Vf 60 * (15  x) = 50 * (15) x = 150/60 = 2.5 cups Answer (B) Note that we use CiVi = CfVf after removing a part of the mix. Weight = Concentration*Volume The weight of raspberries remains the same before adding back x cups and after adding back x cups. So those two points are your initial and final points.
_________________
Karishma Veritas Prep GMAT Instructor
Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >



GMATH Teacher
Status: GMATH founder
Joined: 12 Oct 2010
Posts: 932

Re: A dessert recipe calls for 50% melted chocolate and 50% rasp
[#permalink]
Show Tags
21 Mar 2019, 14:04
vaishnogmat wrote: A dessert recipe calls for 50% melted chocolate and 50% raspberry puree to make a particular sauce. A chef accidentally makes 15 cups of the sauce with 40% melted chocolate and 60% raspberry puree instead. How many cups of the sauce does he need to remove and replace with pure melted chocolate to make the sauce the proper 50% of each?
A. 1.5 B. 2.5 C. 3 D. 4.5 E. 5
\(?\,\,\, = \,\,\,x = \# \,\,{\rm{out}}\,\,\underline {{\rm{sauce}}} \,\,{\rm{cups}}\,\, = \,\,\# \,\,{\rm{in}}\,\,\underline {{\rm{100\% }}\,\,{\rm{choco}}} \,\,{\rm{cups}}\) \(\matrix{ {{\rm{real}} \to {\rm{ideal}}} \cr {15\,\,{\rm{cups}}} \cr } \,\,\,\left\{ \matrix{ \,{\rm{choco}}\,:\,\,{2 \over 5}\left( {15} \right)\,\,{\rm{cups}}  x \cdot {2 \over 5}\,\,{\rm{cups}} + x\,\,{\rm{cups}}\,\,\,\,\, = \,\,\,\,{{2.5} \over 5}\left( {15} \right)\,\,{\rm{cups}} \hfill \cr \,{\rm{rasp}}\,:\,\,{3 \over 5}\left( {15} \right)\,\,{\rm{cups}}  x \cdot {3 \over 5}\,\,{\rm{cups}} + 0\,\,{\rm{cups}}\,\,\,\,\, = \,\,\,\,{{2.5} \over 5}\left( {15} \right)\,\,{\rm{cups}} \hfill \cr} \right.\) \({3 \over 5}\left( {15} \right)\,\,{\rm{cups}}  x \cdot {3 \over 5}\,\,{\rm{cups}}\,\,\,\,\, = \,\,\,\,{{2.5} \over 5}\left( {15} \right)\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,{3 \over 5}x = {{0.5} \over 5}\left( {15} \right)\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,x = 2.5\) \(\left[ {\,{2 \over 5}\left( {15} \right)\,\,{\rm{cups}}  x \cdot {2 \over 5}\,\,{\rm{cups}} + x\,\,{\rm{cups}}\,\,\,\,\, = \,\,\,\,{{2.5} \over 5}\left( {15} \right)\,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,{3 \over 5}x = {{0.5} \over 5}\left( {15} \right)\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,x = 2.5} \right]\) The correct answer is (B). We follow the notations and rationale taught in the GMATH method. Regards, Fabio.
_________________
Fabio Skilnik :: GMATH method creator (Math for the GMAT) Our highlevel "quant" preparation starts here: https://gmath.net



Intern
Joined: 06 Dec 2017
Posts: 13

Re: A dessert recipe calls for 50% melted chocolate and 50% rasp
[#permalink]
Show Tags
29 Mar 2019, 22:47
summer101 wrote: I misread the question, Again!! Nyways another method 40% 50% \ / 50% / \ 100% 10%
so 50/10 = 15x/x => x =2.5 cups I think I am not aware of basic working in this method, I can understand the 10% (weight) on the right bottom, But can someone please explain how the weight of melted chocolate is 100% (Left bottom).



Intern
Joined: 22 Jan 2014
Posts: 4

Re: A dessert recipe calls for 50% melted chocolate and 50% rasp
[#permalink]
Show Tags
06 Apr 2019, 08:42
can this be solved with criss cross method?



Intern
Joined: 07 Dec 2016
Posts: 2

A dessert recipe calls for 50% melted chocolate and 50% rasp
[#permalink]
Show Tags
10 Apr 2019, 18:12
one cup has 3/5 amount of rasp. from that we are removing x amount of sauce. Thereby effectively removing 3x/5 amount of sauce; inorder to obtain 1/2 amount of rasp. Now applying this directly we have 3/5  3x/5 = 1/2 ===> x = 1/6
For 15 cups ==> x = 15*1/6 ==> 2.5 cups




A dessert recipe calls for 50% melted chocolate and 50% rasp
[#permalink]
10 Apr 2019, 18:12



Go to page
Previous
1 2
[ 35 posts ]



