Last visit was: 12 Dec 2024, 12:45 It is currently 12 Dec 2024, 12:45
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 12 Dec 2024
Posts: 97,848
Own Kudos:
Given Kudos: 88,255
Products:
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 97,848
Kudos: 685,373
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
pushpitkc
Joined: 26 Feb 2016
Last visit: 24 Apr 2024
Posts: 2,856
Own Kudos:
Given Kudos: 47
Location: India
GPA: 3.12
Posts: 2,856
Kudos: 5,582
Kudos
Add Kudos
Bookmarks
Bookmark this Post
avatar
sjavvadi
Joined: 03 Oct 2013
Last visit: 24 May 2018
Posts: 56
Own Kudos:
Given Kudos: 16
Posts: 56
Kudos: 73
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
sashiim20
Joined: 04 Dec 2015
Last visit: 05 Jun 2024
Posts: 620
Own Kudos:
1,682
 []
Given Kudos: 276
Location: India
Concentration: Technology, Strategy
WE:Information Technology (Consulting)
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
If \(\frac{a}{b} = −\frac{2}{3}\), then \(\frac{b − a}{a} =\)

(A) − 5/2
(B) − 5/3
(C) − 1/3
(D) 0
(E) 7

Method 1:
\(\frac{b − a}{a}\)
Simplifying the fraction we get; \(\frac{b − a}{a}\) = \(\frac{b}{a}\) - \(\frac{a}{a}\)
= \(\frac{b}{a}\) - 1 -----------------(i)

Given; \(\frac{a}{b} = −\frac{2}{3}\)
\(\frac{b}{a}\) = \(−\frac{3}{2}\) --------------- (ii)

Substituting the value of (ii) in the equation (i)
\(−\frac{3}{2}\) -1 = \(\frac{(-3-2)}{2}\) = \(\frac{-5}{2}\)
Answer A...




Method 2:
\(\frac{a}{b} = −\frac{2}{3}\)
a = \(−\frac{2}{3}\)b
Substituting value of a in the equation \(\frac{b − a}{a} =\)
\((b-(\frac{-2}{3})b) / (\frac{-2}{3})b\)

= \((b + (\frac{2}{3})b) / - (\frac{2}{3})b\)

= (\(\frac{3b + 2b}{3}) / - (\frac{2}{3})b\)

= \((\frac{5b}{3}) / - (\frac{2}{3})b\) = \(\frac{-5}{2}\)
Answer A...
User avatar
mohshu
Joined: 21 Mar 2016
Last visit: 26 Dec 2019
Posts: 448
Own Kudos:
Given Kudos: 103
Products:
Posts: 448
Kudos: 127
Kudos
Add Kudos
Bookmarks
Bookmark this Post
simplify (b-a/a)
gives (b/a) - 1 = (-3/2) - 1
= -5/2
ans A
avatar
obliraj
Joined: 26 Jul 2016
Last visit: 17 Apr 2019
Posts: 35
Own Kudos:
Given Kudos: 21
Location: India
Kudos
Add Kudos
Bookmarks
Bookmark this Post
(b-a)/a= (b/a)-1
(-3/2)-1= -5/2
Answer A
avatar
GovindAgrawal077
Joined: 23 May 2017
Last visit: 08 Jun 2017
Posts: 5
Posts: 5
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
If \(\frac{a}{b} = −\frac{2}{3}\), then \(\frac{b − a}{a} =\)

(A) − 5/2
(B) − 5/3
(C) − 1/3
(D) 0
(E) 7

we are given the ratio of a:b as 2:3. if we break the required equation we get: b/a - a/a. So, fianally we need to find b/a - 1. Therefore, we get b/a -1 = -3/2 -1 = -5/2. Therefore, the ans is A.
User avatar
ScottTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 14 Oct 2015
Last visit: 12 Dec 2024
Posts: 19,862
Own Kudos:
Given Kudos: 288
Status:Founder & CEO
Affiliations: Target Test Prep
Location: United States (CA)
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 19,862
Kudos: 24,268
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
If \(\frac{a}{b} = −\frac{2}{3}\), then \(\frac{b − a}{a} =\)

(A) − 5/2
(B) − 5/3
(C) − 1/3
(D) 0
(E) 7

We are given that a/b = -2/3, so:

3a = -2b

-3a/2 = b

Thus, (b - a)/a is:

[(-3a/2) - a]/a

[(-3a/2) - (2a/2)]/a

(-5a/2)/a = -5a/2a = -5/2

Answer: A
Moderator:
Math Expert
97848 posts