GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 26 Apr 2019, 01:29

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# If x and y are non-zero integers then the value of 2/(1/x^(-2)+1/y^

Author Message
TAGS:

### Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 54544
If x and y are non-zero integers then the value of 2/(1/x^(-2)+1/y^  [#permalink]

### Show Tags

03 Sep 2017, 05:48
00:00

Difficulty:

25% (medium)

Question Stats:

70% (01:14) correct 30% (01:37) wrong based on 111 sessions

### HideShow timer Statistics

If x and y are non-zero integers then the value of $$[\frac{2}{\frac{1}{x^{(-2)}}+\frac{1}{y^{(-2)}}}]^{(-2)}$$ can be expressed as

A. $$\frac{4}{x^4+2x^2y^2+y^4}$$

B. $$\frac{1}{x+y}$$

C. $$\frac{x^4+y^4}{4}$$

D. $$\frac{x^2+2xy+y^2}{4}$$

E. $$\frac{x^4+2x^2y^2+y^4}{4}$$

_________________
Math Expert
Joined: 02 Aug 2009
Posts: 7596
Re: If x and y are non-zero integers then the value of 2/(1/x^(-2)+1/y^  [#permalink]

### Show Tags

03 Sep 2017, 08:37
Bunuel wrote:
If x and y are non-zero integers then the value of $$[\frac{2}{\frac{1}{x^{(-2)}}+\frac{1}{y^{(-2)}}}]^{(-2)}$$ can be expressed as

A. $$\frac{4}{x^4+2x^2y^2+y^4}$$

B. $$\frac{1}{x+y}$$

C. $$\frac{x^4+y^4}{4}$$

D. $$\frac{x^2+2xy+y^2}{4}$$

E. $$\frac{x^4+2x^2y^2+y^4}{4}$$

$$[\frac{2}{\frac{1}{x^{(-2)}}+\frac{1}{y^{(-2)}}}]^{(-2)}=\frac{2}{x^2+y^2}^{-2}=\frac{x^2+y^2}{2}^2=\frac{x^4+2x^2y^2+y^4}{4}$$

E
_________________
Director
Joined: 04 Dec 2015
Posts: 750
Location: India
Concentration: Technology, Strategy
WE: Information Technology (Consulting)
Re: If x and y are non-zero integers then the value of 2/(1/x^(-2)+1/y^  [#permalink]

### Show Tags

03 Sep 2017, 08:52
Bunuel wrote:
If x and y are non-zero integers then the value of $$[\frac{2}{\frac{1}{x^{(-2)}}+\frac{1}{y^{(-2)}}}]^{(-2)}$$ can be expressed as

A. $$\frac{4}{x^4+2x^2y^2+y^4}$$

B. $$\frac{1}{x+y}$$

C. $$\frac{x^4+y^4}{4}$$

D. $$\frac{x^2+2xy+y^2}{4}$$

E. $$\frac{x^4+2x^2y^2+y^4}{4}$$

$$[\frac{2}{\frac{1}{x^{(-2)}}+\frac{1}{y^{(-2)}}}]^{(-2)}$$

$$[\frac{2}{\frac{x^{2}}{1}+\frac{y^{2}}{1}}]^{(-2)}$$

$$[\frac{2}{x^{2}+y^{2}}]^{(-2)}$$

$$[\frac{x^{2}+y^{2}}{2}]^{2}$$

$$\frac{(x^{2}+y^{2})^{2}}{4}$$

$$\frac{x^4+2x^2y^2+y^4}{4}$$

Re: If x and y are non-zero integers then the value of 2/(1/x^(-2)+1/y^   [#permalink] 03 Sep 2017, 08:52
Display posts from previous: Sort by