Bunuel wrote:
If x laborers can build a wall in t hours, then in terms of t how long would it take 3 times the number of laborers to build eight walls?
A. t/24
B. 3t/8
C. 8t/3
D. 8t
E. 24t
\(?\,\, = \,\,f\left( t \right)\,\,\,\,\,\,\,\,\left[ {\text{h}} \right]\)
\(\begin{array}{*{20}{c}}
{x\,\,{\text{people}}} \\
{3x\,\,{\text{people}}}
\end{array}\,\,\,\,\,\,\begin{array}{*{20}{c}}
{t\,\,{\text{h}}} \\
{?\,\,{\text{h}}}
\end{array}\,\,\,\,\,\,\,\begin{array}{*{20}{c}}
{1\,\,{\text{job}}} \\
{8\,{\text{job}}}
\end{array}\)
\(\begin{array}{*{20}{c}}
{} \\
{\left( { \cdot \,3} \right)} \\
{}
\end{array}\,\,\,\,\begin{array}{*{20}{c}}
{x\,\,{\text{people}}} \\
{3x\,\,{\text{people}}} \\
{3x\,\,{\text{people}}}
\end{array}\,\,\,\,\,\,\,\begin{array}{*{20}{c}}
{t\,\,{\text{h}}} \\
{t\,\,{\text{h}}} \\
{?\,\,{\text{h}}}
\end{array}\,\,\,\,\,\,\,\begin{array}{*{20}{c}}
{1\,\,{\text{job}}} \\
{3\,\,{\text{jobs}}} \\
{8\,\,{\text{jobs}}}
\end{array}\)
\(\left( {3x\,\,{\text{people}}} \right)\,\,\,\,\,\, \downarrow \begin{array}{*{20}{c}}
{t\,\,{\text{h}}} \\
{?\,\,{\text{h}}}
\end{array}\,\,\,\,\,\, \downarrow \begin{array}{*{20}{c}}
{3\,\,{\text{jobs}}} \\
{8\,\,{\text{jobs}}}
\end{array}\)
\(\frac{?}{t} = \frac{8}{3}\,\,\,\,\, \Rightarrow \,\,\,\,\,? = \frac{{8t}}{3}\)
The above follows the notations and rationale taught in the GMATH method.
_________________
Fabio Skilnik ::
GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here:
https://gmath.net