GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 19 May 2019, 19:55

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# If x, y and z are integers, what is y – z?

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

### Hide Tags

Intern
Joined: 26 Jun 2012
Posts: 24
Location: Germany
GMAT 1: 570 Q31 V39
GMAT 2: 710 Q43 V44
If x, y and z are integers, what is y – z?  [#permalink]

### Show Tags

21 Jul 2013, 08:14
3
9
00:00

Difficulty:

55% (hard)

Question Stats:

68% (02:21) correct 32% (02:15) wrong based on 349 sessions

### HideShow timer Statistics

If x, y and z are integers, what is y – z?

(1) $$100^x = 2^y5^z$$

(2) $$10^y = 20^x5^{z+1}$$
VP
Status: Far, far away!
Joined: 02 Sep 2012
Posts: 1052
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8
Re: If x, y and z are integers, what is y – z?  [#permalink]

### Show Tags

21 Jul 2013, 08:41
1
If x, y and z are integers, what is y – z?

(1) $$100^x = 2^y5^z$$
$$2^{2x}5^{2x}=2^y5^z$$ so $$y-z=2x-2x=0$$.
Sufficient

(2) $$10^y = 20^x5^{z+1}$$
$$2^y5^y=2^{2x}5^x5^{z+1}$$ so $$y=2x$$ and $$y=x+z+1$$. We cannot determine y-z.
Consider y=4,x=2 and z=1 so y-z=3; or y=8,x=4 and y=3 so y-z=5.
Not sufficient

A
_________________
It is beyond a doubt that all our knowledge that begins with experience.
Kant , Critique of Pure Reason

Tips and tricks: Inequalities , Mixture | Review: MGMAT workshop
Strategy: SmartGMAT v1.0 | Questions: Verbal challenge SC I-II- CR New SC set out !! , My Quant

Rules for Posting in the Verbal Forum - Rules for Posting in the Quant Forum[/size][/color][/b]
Math Expert
Joined: 02 Sep 2009
Posts: 55150
If x, y and z are integers, what is y – z?  [#permalink]

### Show Tags

30 Aug 2013, 04:46
3
If x, y and z are integers, what is y – z?

(1) $$100^x = 2^y5^z$$ --> $$2^{2x}5^{2x}=2^y5^z$$ --> equate the exponents: $$2x=y$$ and $$2x=z$$ --> thus $$2x-2x=y-z=0$$. Sufficient.

(2) $$10^y = 20^x5^{z+1}$$ --> $$2^y5^y=2^{2x}*5^{x+z+1}$$ --> $$y=2x$$ and $$y=x+z+1$$. We cannot get the value of y-z from this. Not sufficient,

Hope it's clear.
_________________
Math Expert
Joined: 02 Sep 2009
Posts: 55150
Re: If x, y and z are integers, what is y – z?  [#permalink]

### Show Tags

02 May 2016, 04:07
Bunuel wrote:
vishalrastogi wrote:
I could not get the explanation here, can anybody explain this, please ?

If x, y and z are integers, what is y – z?

(1) $$100^x = 2^y5^z$$ --> $$2^{2x}5^{2x}=2^y5^z$$ --> equate the exponents: $$2x=y$$ and $$2x=z$$ --> thus $$2x-2x=y-z=0$$. Sufficient.

(2) $$10^y = 20^x5^{z+1}$$ --> $$2^y5^y=2^{2x}*5^{x+z+1}$$ --> $$y=2x$$ and $$y=x+z+1$$. We cannot get the value of y-z from this. Not sufficient,

Hope it's clear.

How can 1 be sufficient??? In the given statement, its 5 raise to the power 2. And the solution you have provided considers it as 5 raise to the power z.

It's 5^z both in the question and in the solution.
_________________
Intern
Joined: 24 Jun 2012
Posts: 27
Re: If x, y and z are integers, what is y – z?  [#permalink]

### Show Tags

02 May 2016, 16:58
1
I think what's confusing some folks is the second equation is giving y = x+z+1 bringing z to the left side. y-z = x+1.
This still doesn't give a value for y-z. Question is asking for a value for y-z and not if you can deduce an expression for y-z. I made this silly mistake once in the heat of the moment so sharing it here.
_________________
Give Kudos if you want to say thanks
Director
Joined: 23 Feb 2015
Posts: 923
GMAT 1: 720 Q49 V40
Re: If x, y and z are integers, what is y – z?  [#permalink]

### Show Tags

17 Nov 2016, 18:58
Bunuel wrote:
vishalrastogi wrote:
I could not get the explanation here, can anybody explain this, please ?

If x, y and z are integers, what is y – z?

(1) $$100^x = 2^y5^z$$ --> $$2^{2x}5^{2x}=2^y5^z$$ --> equate the exponents: $$2x=y$$ and $$2x=z$$ --> thus $$2x-2x=y-z=0$$. Sufficient.

Hope it's clear.

If y-z=0, then y=z.
If i put the value of y=z, how can we legitimate the statement 1?
statement 1:
$$100^x = 2^y5^z$$
$$2^{2x}5^{2x}=2^z5^z$$
To legitimate the statement 1 we still need the value of x and z. But, they are still unknown here. How can you make known it for all?
Then, how can we conclude it? Bunuel
Thank you...
_________________
“The heights by great men reached and kept were not attained in sudden flight but, they while their companions slept, they were toiling upwards in the night.”

Do you need official questions for Quant?
3700 Unique Official GMAT Quant Questions
------
SEARCH FOR ALL TAGS
GMAT Club Tests
Math Expert
Joined: 02 Sep 2009
Posts: 55150
Re: If x, y and z are integers, what is y – z?  [#permalink]

### Show Tags

17 Nov 2016, 21:50
1
iMyself wrote:
Bunuel wrote:
vishalrastogi wrote:
I could not get the explanation here, can anybody explain this, please ?

If x, y and z are integers, what is y – z?

(1) $$100^x = 2^y5^z$$ --> $$2^{2x}5^{2x}=2^y5^z$$ --> equate the exponents: $$2x=y$$ and $$2x=z$$ --> thus $$2x-2x=y-z=0$$. Sufficient.

Hope it's clear.

If y-z=0, then y=z.
If i put the value of y=z, how can we legitimate the statement 1?
statement 1:
$$100^x = 2^y5^z$$
$$2^{2x}5^{2x}=2^z5^z$$
To legitimate the statement 1 we still need the value of x and z. But, they are still unknown here. How can you make known it for all?
Then, how can we conclude it? Bunuel
Thank you...

The question asks the value of y - z, not the individual value of x, y, and z. From the solution we got that y - z = 0.
_________________
Director
Joined: 23 Feb 2015
Posts: 923
GMAT 1: 720 Q49 V40
Re: If x, y and z are integers, what is y – z?  [#permalink]

### Show Tags

17 Nov 2016, 22:06
But how did you get the value of y-z , i did not get from your explanation actually. Thank you...

Sent from my iPhone using GMAT Club Forum mobile app
_________________
“The heights by great men reached and kept were not attained in sudden flight but, they while their companions slept, they were toiling upwards in the night.”

Do you need official questions for Quant?
3700 Unique Official GMAT Quant Questions
------
SEARCH FOR ALL TAGS
GMAT Club Tests
Math Expert
Joined: 02 Sep 2009
Posts: 55150
Re: If x, y and z are integers, what is y – z?  [#permalink]

### Show Tags

17 Nov 2016, 22:09
1
iMyself wrote:
But how did you get the value of y-z , i did not get from your explanation actually. Thank you...

Sent from my iPhone using GMAT Club Forum mobile app

x, y, and z are given to be integers.
We have $$2^{2x}5^{2x}=2^y5^z$$ --> equate the exponents of 2 and 5: $$2x=y$$ and $$2x=z$$. Thus 2x = y = z.
_________________
Director
Joined: 23 Feb 2015
Posts: 923
GMAT 1: 720 Q49 V40
Re: If x, y and z are integers, what is y – z?  [#permalink]

### Show Tags

18 Nov 2016, 07:57
Bunuel wrote:
iMyself wrote:
But how did you get the value of y-z , i did not get from your explanation actually. Thank you...

Sent from my iPhone using GMAT Club Forum mobile app

x, y, and z are given to be integers.
We have $$2^{2x}5^{2x}=2^y5^z$$ --> equate the exponents of 2 and 5: $$2x=y$$ and $$2x=z$$. Thus 2x = y = z.

This is the first time i learn that i can equate the exponent after having multiple variables on both side. I, normally, equate the exponent when i have only one part in the right hand side and the other one in the left hand side. like below...
2^{2x}=2^y
--> 2x=y
it is ok.
But when it is something like below then it is the first time i learn.
$$2^{2x}5^{2x}=2^y5^z$$
$$2x=y$$ and $$2x=z$$.
Anyway, many many thanks with 'kudos'
_________________
“The heights by great men reached and kept were not attained in sudden flight but, they while their companions slept, they were toiling upwards in the night.”

Do you need official questions for Quant?
3700 Unique Official GMAT Quant Questions
------
SEARCH FOR ALL TAGS
GMAT Club Tests
Math Expert
Joined: 02 Sep 2009
Posts: 55150
Re: If x, y and z are integers, what is y – z?  [#permalink]

### Show Tags

20 Nov 2016, 03:22
1
iMyself wrote:
Bunuel wrote:
iMyself wrote:
But how did you get the value of y-z , i did not get from your explanation actually. Thank you...

Sent from my iPhone using GMAT Club Forum mobile app

x, y, and z are given to be integers.
We have $$2^{2x}5^{2x}=2^y5^z$$ --> equate the exponents of 2 and 5: $$2x=y$$ and $$2x=z$$. Thus 2x = y = z.

This is the first time i learn that i can equate the exponent after having multiple variables on both side. I, normally, equate the exponent when i have only one part in the right hand side and the other one in the left hand side. like below...
2^{2x}=2^y
--> 2x=y
it is ok.
But when it is something like below then it is the first time i learn.
$$2^{2x}5^{2x}=2^y5^z$$
$$2x=y$$ and $$2x=z$$.
Anyway, many many thanks with 'kudos'

We can only do this here because we know that x, y, and z are integers.
_________________
Director
Joined: 23 Feb 2015
Posts: 923
GMAT 1: 720 Q49 V40
Re: If x, y and z are integers, what is y – z?  [#permalink]

### Show Tags

20 Nov 2016, 03:30
Bunuel wrote:
iMyself wrote:
Bunuel wrote:

x, y, and z are given to be integers.
We have $$2^{2x}5^{2x}=2^y5^z$$ --> equate the exponents of 2 and 5: $$2x=y$$ and $$2x=z$$. Thus 2x = y = z.

This is the first time i learn that i can equate the exponent after having multiple variables on both side. I, normally, equate the exponent when i have only one part in the right hand side and the other one in the left hand side. like below...
2^{2x}=2^y
--> 2x=y
it is ok.
But when it is something like below then it is the first time i learn.
$$2^{2x}5^{2x}=2^y5^z$$
$$2x=y$$ and $$2x=z$$.
Anyway, many many thanks with 'kudos'

We can only do this here because we know that x, y, and z are integers.

That means: we can't equate this type of things if the variable is NOT integer, right Bunuel?
_________________
“The heights by great men reached and kept were not attained in sudden flight but, they while their companions slept, they were toiling upwards in the night.”

Do you need official questions for Quant?
3700 Unique Official GMAT Quant Questions
------
SEARCH FOR ALL TAGS
GMAT Club Tests
Math Expert
Joined: 02 Sep 2009
Posts: 55150
Re: If x, y and z are integers, what is y – z?  [#permalink]

### Show Tags

20 Nov 2016, 03:32
iMyself wrote:
That means: we can't equate this type of things if the variable is NOT integer, right Bunuel?

_______________________
Yes...
_________________
Director
Joined: 23 Feb 2015
Posts: 923
GMAT 1: 720 Q49 V40
Re: If x, y and z are integers, what is y – z?  [#permalink]

### Show Tags

20 Nov 2016, 03:40
Bunuel wrote:
iMyself wrote:
That means: we can't equate this type of things if the variable is NOT integer, right Bunuel?

_______________________
Yes...

Thank you Brother with kudos!
_________________
“The heights by great men reached and kept were not attained in sudden flight but, they while their companions slept, they were toiling upwards in the night.”

Do you need official questions for Quant?
3700 Unique Official GMAT Quant Questions
------
SEARCH FOR ALL TAGS
GMAT Club Tests
Target Test Prep Representative
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 6146
Location: United States (CA)
Re: If x, y and z are integers, what is y – z?  [#permalink]

### Show Tags

29 Nov 2016, 16:33
kingflo wrote:
If x, y and z are integers, what is y – z?

(1) $$100^x = 2^y5^z$$

(2) $$10^y = 20^x5^{z+1}$$

We need to determine the value of y – z.

Statement One Alone:

100^x = 2^y * 5^z

Notice that 100^x = (2^2 * 5^2)^x = 2^(2x) * 5^(2x). Equate this with 2^y * 5^z and we have:

2^(2x) * 5^(2x) = 2^y * 5^z

Therefore, 2^(2x) = 2^y and 5^(2x) = 5^z.

Thus, 2x = y and 2x = z. Therefore, y - z = 2x - 2x = 0.

Statement one alone is sufficient to answer the question. We can eliminate answer choices B, C, and E.

Statement Two Alone:

10^y = 20^x * 5^(z+1)

Since 20^x = (2^2 * 5)^x = 2^(2x) * 5^x, that means 20^x * 5^(z+1) = 2^(2x) * 5^x * 5^(z+1) = 2^(2x) * 5^(x+z+1). Notice that 10^y = (2 * 5)^y = 2^y * 5^y, so we have:

2^y * 5^y = 2^(2x) * 5^(x+z+1)

Therefore, 2^y = 2^(2x) and 5^y = 5^(x+z+1).

Thus, y = 2x and y = x + z + 1. From the second equation, we have y - z = x + 1. However, since we do not know the value of x, we cannot determine the value of y - z. Statement two alone is not sufficient to answer the question.

_________________

# Scott Woodbury-Stewart

Founder and CEO

Scott@TargetTestPrep.com
122 Reviews

5-star rated online GMAT quant
self study course

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

If you find one of my posts helpful, please take a moment to click on the "Kudos" button.

Intern
Joined: 05 Dec 2017
Posts: 2
Re: If x, y and z are integers, what is y – z?  [#permalink]

### Show Tags

05 Dec 2017, 02:25
kingflo wrote:
If x, y and z are integers, what is y – z?

(1) $$100^x = 2^y5^z$$

(2) $$10^y = 20^x5^{z+1}$$

Agree to the explanations given. However, if x=y=z=0, then the answer must be E. Neither the initial question task nor each of the two conditions stipulate that x can't equal y and z or 0. Why am I not correct?
Math Expert
Joined: 02 Sep 2009
Posts: 55150
Re: If x, y and z are integers, what is y – z?  [#permalink]

### Show Tags

05 Dec 2017, 02:54
DoISuckAtMath wrote:
kingflo wrote:
If x, y and z are integers, what is y – z?

(1) $$100^x = 2^y5^z$$

(2) $$10^y = 20^x5^{z+1}$$

Agree to the explanations given. However, if x=y=z=0, then the answer must be E. Neither the initial question task nor each of the two conditions stipulate that x can't equal y and z or 0. Why am I not correct?

If answer is A, then it's A no matter which (acceptable) values you substitute.

The question asks to find the value of y – z. From (1) we goth that y - z = 0. If x = y = z = 0, then y - z is still 0.
_________________
Non-Human User
Joined: 09 Sep 2013
Posts: 10951
Re: If x, y and z are integers, what is y – z?  [#permalink]

### Show Tags

11 Jan 2019, 08:47
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Re: If x, y and z are integers, what is y – z?   [#permalink] 11 Jan 2019, 08:47
Display posts from previous: Sort by

# If x, y and z are integers, what is y – z?

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.