GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 14 Oct 2019, 01:45

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Mel and Nora share a total of three red marbles, two green marbles, an

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58312
Mel and Nora share a total of three red marbles, two green marbles, an  [#permalink]

Show Tags

New post 16 Feb 2017, 03:32
5
14
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

39% (02:28) correct 61% (02:32) wrong based on 191 sessions

HideShow timer Statistics

Most Helpful Expert Reply
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58312
Mel and Nora share a total of three red marbles, two green marbles, an  [#permalink]

Show Tags

New post 14 Aug 2017, 12:11
3
6
vituutiv wrote:
Does anyone have more problems like this? (i.e.: with two possible framings, of which one has a much simpler math)

Thanks!


DISTRIBUTING ITEMS/PEOPLE/NUMBERS... (QUESTION COLLECTION):



https://gmatclub.com/forum/in-how-many- ... 87128.html
https://gmatclub.com/forum/in-how-many- ... 25669.html
https://gmatclub.com/forum/larry-michae ... 08739.html
https://gmatclub.com/forum/in-how-many- ... 26991.html
https://gmatclub.com/forum/in-how-many- ... 98697.html
https://gmatclub.com/forum/how-many-pos ... 85291.html
https://gmatclub.com/forum/how-many-way ... 37198.html
https://gmatclub.com/forum/in-how-many- ... 41072.html
https://gmatclub.com/forum/mrs-smith-ha ... 98225.html
https://gmatclub.com/forum/in-how-many- ... 70689.html
https://gmatclub.com/forum/in-how-many- ... 05384.html
https://gmatclub.com/forum/four-boys-pi ... 98701.html
https://gmatclub.com/forum/how-many-way ... 61598.html
https://gmatclub.com/forum/in-how-many- ... 73423.html
http://gmatclub.com/forum/in-how-many-w ... 41070.html
https://gmatclub.com/forum/in-how-many- ... 64389.html
https://gmatclub.com/forum/in-how-many- ... 33322.html
https://gmatclub.com/forum/in-how-many- ... 31187.html
https://gmatclub.com/forum/in-how-many- ... 06279.html
https://gmatclub.com/forum/in-how-many- ... 26348.html
https://gmatclub.com/forum/in-how-many- ... 81816.html
https://gmatclub.com/forum/in-how-many- ... 34223.html
https://gmatclub.com/forum/in-how-many- ... 40328.html
https://gmatclub.com/forum/in-how-many- ... 40329.html
https://gmatclub.com/forum/mel-and-nora ... 34163.html

HARD (FOR PRACTICE): https://gmatclub.com/forum/5-rings-on-4 ... 86111.html
_________________
Most Helpful Community Reply
Senior SC Moderator
User avatar
V
Joined: 14 Nov 2016
Posts: 1349
Location: Malaysia
GMAT ToolKit User
Mel and Nora share a total of three red marbles, two green marbles, an  [#permalink]

Show Tags

New post 17 Feb 2017, 22:30
1
6
Bunuel wrote:
Mel and Nora share a total of three red marbles, two green marbles, and one blue marble. In how many ways can Mel and Nora divide the marbles between themselves, if it is not necessary for each of them to get at least one marble?

A. \(6\)
B. \(18\)
C. \(24\)
D. \(36\)
E. \(72\)


Official solution from Veritas Prep.

Combinatorics questions, like this one, so often come down to a matter of approach. That is, we can tell the story of this problem in different ways, each of which leads to a valid solution, but some of which lead to far easier solutions than others.

For instance, we might view this problem as “Mel could get zero, one, two, three, four, five, or six marbles, in a variety of color combinations” and then calculate/count the number of possible combinations for each possible number of marbles. We might also rely on the symmetry between Mel and Nora to cut that workload almost in half (calculate for Mel getting zero through two, multiply by \(2\) to account for Nora getting zero through two, then add the case of Mel and Nora each getting three). But even then, we’d be expending a fair amount of brute force effort.

If we tell the story a bit differently, though, we can make the math a lot better. Rather than focus on one of the people and their number of marbles in the aggregate, focus on one of the colors and the number of that type that one person gets. When it comes to red marbles, Mel could wind up with none, one, two, or three – that’s \(4\) possibilities. As for green marbles, Mel could have none, one, or two\(3\) possibilities. And the blue marble is a take-it-or-leave-it proposition\(2\) possibilities. (We don’t have to calculate anything for Nora; she’ll just get whatever is left.) Since we’re distributing red, blue, and green, we multiply these results to find out that there are 432=\(24\) total options.

The correct answer is \(C\).

Did you notice this problem’s connection to the Unique Factors Trick? What we’re doing here is actually a perfect analogy – we’re taking some quantities of identical items from each of several categories, and it really makes no difference whether those items are various colored marbles or various prime factors. It makes sense that the formula is the same – the number of items in each category plus one (to cover the “choose zero” possibility), and then multiply the results.
_________________
"Be challenged at EVERY MOMENT."

“Strength doesn’t come from what you can do. It comes from overcoming the things you once thought you couldn’t.”

"Each stage of the journey is crucial to attaining new heights of knowledge."

Rules for posting in verbal forum | Please DO NOT post short answer in your post!

Advanced Search : https://gmatclub.com/forum/advanced-search/
General Discussion
Intern
Intern
avatar
B
Joined: 10 Oct 2016
Posts: 1
Re: Mel and Nora share a total of three red marbles, two green marbles, an  [#permalink]

Show Tags

New post 17 Feb 2017, 02:57
2
Let's try this one.

Number of ways we can divide the Red marbles: MMM, MMN, MNN, NNN --> 4 ways
Number of ways we can divide the Green marbles: MM, MN, NN --> 3 ways
Number of ways we can divide the Blue marble: M or N --> 2 ways

Total number of ways: 4*3*2 = 24

C for me!
Intern
Intern
avatar
B
Joined: 24 May 2017
Posts: 13
Re: Mel and Nora share a total of three red marbles, two green marbles, an  [#permalink]

Show Tags

New post 14 Aug 2017, 12:05
Does anyone have more problems like this? (i.e.: with two possible framings, of which one has a much simpler math)

Thanks!
Manager
Manager
User avatar
G
Joined: 21 Jun 2017
Posts: 231
Concentration: Finance, Economics
WE: Corporate Finance (Commercial Banking)
Re: Mel and Nora share a total of three red marbles, two green marbles, an  [#permalink]

Show Tags

New post 13 Oct 2018, 23:49
2
Identical objects division into r no of people is given n+r-1Cr-1 or by |000 00 0 {one separator(means two people or two sub groups or two divisions) and 6 identical objects}
Lets break this into smaller chunks
1 division of 3 identical red marbles within two people. |ooo ----> This can be done in 4!/3! ways = 4 ways
2 division of 2 identical green marbles within two people. |oo ----> This can be done in 3!/2! ways = 3 ways
3 division of 1 green marble within two people. This is the easiest,it can be with either Nora or Med. So only two possibilities.


Required =1*2*3 = 4*3*2 = 24
_________________
Even if it takes me 30 attempts, I am determined enough to score 740+ in my 31st attempt. This is it, this is what I have been waiting for, now is the time to get up and fight, for my life is 100% my responsibility.

Dil ye Ziddi hai !!!

GMAT 1 - 620 .... Disappointed for 6 months. Im back Im back. Bhai dera tera COMEBACK !!!
GMAT Club Bot
Re: Mel and Nora share a total of three red marbles, two green marbles, an   [#permalink] 13 Oct 2018, 23:49
Display posts from previous: Sort by

Mel and Nora share a total of three red marbles, two green marbles, an

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne