It is currently 24 Feb 2018, 23:22

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Pam and Robin each roll a pair of fair, six-sided dice. What is the pr

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Expert Post
4 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 43898
Pam and Robin each roll a pair of fair, six-sided dice. What is the pr [#permalink]

Show Tags

New post 06 Mar 2017, 00:47
4
This post received
KUDOS
Expert's post
17
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

25% (01:06) correct 75% (01:31) wrong based on 223 sessions

HideShow timer Statistics

Pam and Robin each roll a pair of fair, six-sided dice. What is the probability that Pam and Robin will both roll the same set of two numbers?

A. 1/216

B. 1/36

C. 5/108

D. 11/216

E. 1/18
[Reveal] Spoiler: OA

_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Senior Manager
Senior Manager
avatar
B
Joined: 06 Dec 2016
Posts: 253
Re: Pam and Robin each roll a pair of fair, six-sided dice. What is the pr [#permalink]

Show Tags

New post 06 Mar 2017, 10:31
I'm not sure if my approach is right.

6/36 x 6/36 = 1/6 x 1 /6 = 1/36. I think the answer is B. I am not sure though.
2 KUDOS received
Intern
Intern
avatar
S
Joined: 05 Sep 2016
Posts: 21
Location: Israel
Concentration: Economics, Technology
WE: Engineering (Telecommunications)
Re: Pam and Robin each roll a pair of fair, six-sided dice. What is the pr [#permalink]

Show Tags

New post 06 Mar 2017, 10:47
2
This post received
KUDOS
The answer should be D. 11/216.
There are 2 cases:
1. Both dices show the same number, so it's 6 out of 36. Then for the other player the probability to roll the same number is 1/6 x 1/6.
2. There are 30 out of 36 options for the dices to be different numbers. The probability for the other player to roll the same is 2/6 x 1/6.

Probability = 1/6 x 1/6 x 1/6 + 5/6 x 2/6 x 1/6 = 11/216

Sent from my Redmi 4 using GMAT Club Forum mobile app
Senior SC Moderator
User avatar
D
Joined: 14 Nov 2016
Posts: 1277
Location: Malaysia
GMAT ToolKit User Premium Member CAT Tests
Pam and Robin each roll a pair of fair, six-sided dice. What is the pr [#permalink]

Show Tags

New post 08 Mar 2017, 00:38
kolodits wrote:
The answer should be D. 11/216.
There are 2 cases:
1. Both dices show the same number, so it's 6 out of 36. Then for the other player the probability to roll the same number is 1/6 x 1/6.
2. There are 30 out of 36 options for the dices to be different numbers. The probability for the other player to roll the same is 2/6 x 1/6.

\(Probability = \frac{1}{6} * \frac{1}{6} * \frac{1}{6} + \frac{5}{6} * \frac{2}{6} * \frac{1}{6} = \frac{11}{216}\)

Sent from my Redmi 4 using GMAT Club Forum mobile app


Dear kolodits, How do you able to get the value for \(\frac{2}{6}\)?
_________________

"Be challenged at EVERY MOMENT."

“Strength doesn’t come from what you can do. It comes from overcoming the things you once thought you couldn’t.”

"Each stage of the journey is crucial to attaining new heights of knowledge."

Rules for posting in verbal forum | Please DO NOT post short answer in your post!

Intern
Intern
avatar
S
Joined: 05 Sep 2016
Posts: 21
Location: Israel
Concentration: Economics, Technology
WE: Engineering (Telecommunications)
Re: Pam and Robin each roll a pair of fair, six-sided dice. What is the pr [#permalink]

Show Tags

New post 08 Mar 2017, 05:42
ziyuen wrote:
kolodits wrote:
The answer should be D. 11/216.
There are 2 cases:
1. Both dices show the same number, so it's 6 out of 36. Then for the other player the probability to roll the same number is 1/6 x 1/6.
2. There are 30 out of 36 options for the dices to be different numbers. The probability for the other player to roll the same is 2/6 x 1/6.

\(Probability = \frac{1}{6} * \frac{1}{6} * \frac{1}{6} + \frac{5}{6} * \frac{2}{6} * \frac{1}{6} = \frac{11}{216}\)

Sent from my Redmi 4 using GMAT Club Forum mobile app


Dear kolodits, How do you able to get the value for \(\frac{2}{6}\)?

The second player roll the first dice. It should be equal to one of the dices the first player rolled. It doesn't matter which one, so there are 2 options out of 6. For the second dice there is only 1 option left, which makes it: 2/6 * 1/6.



Sent from my Redmi 4 using GMAT Club Forum mobile app
1 KUDOS received
Intern
Intern
avatar
B
Joined: 25 Dec 2016
Posts: 17
Location: United States (GA)
Concentration: Healthcare, Entrepreneurship
GMAT 1: 770 Q51 V42
GPA: 3.64
WE: Medicine and Health (Health Care)
Re: Pam and Robin each roll a pair of fair, six-sided dice. What is the pr [#permalink]

Show Tags

New post 08 Mar 2017, 06:50
1
This post received
KUDOS
1
This post was
BOOKMARKED
At first I misread and thought it was asking for the same sum of the pairs of dice which would yield a different answer.

There are two cases. The first is when the first person rolls two different numbers. This happens 5/6 of the time. The second is when the first person rolls the same number on both die. This happens 1/6 of the time.

In the first case, the second person has a 2/6 chance to roll one of the two numbers that the first person rolled with the first die. If the first die is one of the two numbers, then the second person only has a 1/6 chance for the second die to match up. This means that in the first case, the second person has a 2/6 * 1/6 = 1/18 chance to have the same roll. This applies 5/6 of the time.

In the second case, both dice must match, so the second person has a 1/6 chance to roll the same number with each of the two die. This means the total probability is 1/6 * 1/6 = 1/36. This applies 1/6 of the time.

This means that the total probability is 5/6*1/18 + 1/6*1/36 = 5/108 + 1/216 = 10/216 + 1/216 = 11/216. Answer is D
Expert Post
8 KUDOS received
Target Test Prep Representative
User avatar
S
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2016
Re: Pam and Robin each roll a pair of fair, six-sided dice. What is the pr [#permalink]

Show Tags

New post 09 Mar 2017, 16:22
8
This post received
KUDOS
Expert's post
3
This post was
BOOKMARKED
Bunuel wrote:
Pam and Robin each roll a pair of fair, six-sided dice. What is the probability that Pam and Robin will both roll the same set of two numbers?

A. 1/216

B. 1/36

C. 5/108

D. 11/216

E. 1/18


We need to determine the probability that when Pam and Robin each rolls a pair of fair, six-sided dice, they both roll the same set of numbers. There are two scenarios: when Pam and Robin both roll the same two numbers and when they roll two distinct numbers.

Scenario 1: When the two numbers on the dice are the same

Let’s say they both roll 1s. That is, Pam rolls (1, 1) and Robin rolls (1, 1). The probability of this happening is

1/6 x 1/6 x 1/6 x 1/6 = 1/(6^4)

Since the probability is the same for all 6 pairs of numbers, the probability of their rolling the same numbers is 6 x 1/(6^4) = 1/(6^3) = 1/216.

Scenario 2: When the two numbers on the dice are distinct

There are 6 x 5 = 30 ways to roll two distinct numbers when rolling two dice.
Let’s say Pam rolls (1, 2) and Robin also rolls (1, 2). The probability of this happening is:

1/6 x 1/6 x 1/6 x 1/6 = 1/(6^4)

However, if Pam rolls (1, 2) and Robine rolls (2,1), those are still considered the same set of numbers, and the probability of that occurring is also 1/(6^4).

Therefore, for each pair of distinct numbers rolled, the probability is 2 x 1/(6^4) = 2/(6^4). Since there are 30 such pairs, the overall probability is 30 x 2/(6^4) = 60/(^4) = 10/(6^3) = 10/216.

Finally, since the events in option 1 and those in option 2 are mutually exclusive, we use the addition rule of probability. That is, the probability that Pam and Robin will both roll the same set of two numbers is:

1/216 + 10/216 = 11/216

Answer: D
_________________

Jeffery Miller
Head of GMAT Instruction

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

Intern
Intern
avatar
B
Joined: 08 Jul 2016
Posts: 14
CAT Tests
Pam and Robin each roll a pair of fair, six-sided dice. What is the pr [#permalink]

Show Tags

New post 26 Mar 2017, 19:58
JeffTargetTestPrep wrote:
Bunuel wrote:
Pam and Robin each roll a pair of fair, six-sided dice. What is the probability that Pam and Robin will both roll the same set of two numbers?

A. 1/216

B. 1/36

C. 5/108

D. 11/216

E. 1/18


We need to determine the probability that when Pam and Robin each rolls a pair of fair, six-sided dice, they both roll the same set of numbers. There are two scenarios: when Pam and Robin both roll the same two numbers and when they roll two distinct numbers.

Scenario 1: When the two numbers on the dice are the same

Let’s say they both roll 1s. That is, Pam rolls (1, 1) and Robin rolls (1, 1). The probability of this happening is

1/6 x 1/6 x 1/6 x 1/6 = 1/(6^4)

Since the probability is the same for all 6 pairs of numbers, the probability of their rolling the same numbers is 6 x 1/(6^4) = 1/(6^3) = 1/216.

Scenario 2: When the two numbers on the dice are distinct

There are 6 x 5 = 30 ways to roll two distinct numbers when rolling two dice.
Let’s say Pam rolls (1, 2) and Robin also rolls (1, 2). The probability of this happening is:

1/6 x 1/6 x 1/6 x 1/6 = 1/(6^4)

However, if Pam rolls (1, 2) and Robine rolls (2,1), those are still considered the same set of numbers, and the probability of that occurring is also 1/(6^4).

Therefore, for each pair of distinct numbers rolled, the probability is 2 x 1/(6^4) = 2/(6^4). Since there are 30 such pairs, the overall probability is 30 x 2/(6^4) = 60/(^4) = 10/(6^3) = 10/216.

Finally, since the events in option 1 and those in option 2 are mutually exclusive, we use the addition rule of probability. That is, the probability that Pam and Robin will both roll the same set of two numbers is:

1/216 + 10/216 = 11/216

Answer: D

If we are already considering (1,2) and (2,1) to be the same set while calculating probability then why do we have total number of pairs = 30? Shouldn't it be 15?
Manager
Manager
avatar
B
Joined: 01 Feb 2015
Posts: 69
Re: Pam and Robin each roll a pair of fair, six-sided dice. What is the pr [#permalink]

Show Tags

New post 15 Aug 2017, 00:36
jpeeples85 wrote:
At first I misread and thought it was asking for the same sum of the pairs of dice which would yield a different answer.

There are two cases. The first is when the first person rolls two different numbers. This happens 5/6 of the time. The second is when the first person rolls the same number on both die. This happens 1/6 of the time.

In the first case, the second person has a 2/6 chance to roll one of the two numbers that the first person rolled with the first die. If the first die is one of the two numbers, then the second person only has a 1/6 chance for the second die to match up. This means that in the first case, the second person has a 2/6 * 1/6 = 1/18 chance to have the same roll. This applies 5/6 of the time.

In the second case, both dice must match, so the second person has a 1/6 chance to roll the same number with each of the two die. This means the total probability is 1/6 * 1/6 = 1/36. This applies 1/6 of the time.

This means that the total probability is 5/6*1/18 + 1/6*1/36 = 5/108 + 1/216 = 10/216 + 1/216 = 11/216. Answer is D


1/6 of the time? 5/6 of the time? How are you saying that? can you please explain?
Expert Post
3 KUDOS received
EMPOWERgmat Instructor
User avatar
D
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 11074
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: 340 Q170 V170
Re: Pam and Robin each roll a pair of fair, six-sided dice. What is the pr [#permalink]

Show Tags

New post 05 Dec 2017, 12:09
3
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
Hi All,

This is a tougher probability question than average (and you likely will not see this exact situation on Test Day). This is meant to say that you shouldn't be too concerned about this prompt until you're picking up points in all the other 'gettable' areas first.

That having been said, the 'quirk' with this question is that you have to account for the probability of rolling two dice and getting the same number on both dice vs. getting two different numbers.

When rolling two dice, there are 36 possible outcomes:
-6 outcomes have the same number twice (1-1, 2-2, etc.)
-30 outcomes have two different numbers (1-4, 3-2, 5-1, etc.)

Thus, 6/36 = 1/6 of the outcomes are the same number twice
30/36 = 5/6 of the outcomes are two different numbers

IF Pam rolled 5-5, then Robin would have to also roll 5-5. The probability of that occurring would be: (1/6)(1/6) = 1/36.

IF Pam rolled 2-6, then Robin has two different ways to match up (2-6 OR 6-2). The probability of that occurring would be (2/6)(1/6) = 2/36 = 1/18

Accounting for all possible outcomes, the probability of Pam and Robin rolling the same result would be:
(1/6)(1/36) + (5/6)(1/18) =
1/216 + 5/108 =
1/216 + 10/216 =
11/216

Final Answer:
[Reveal] Spoiler:
D


GMAT assassins aren't born, they're made,
Rich
_________________

760+: Learn What GMAT Assassins Do to Score at the Highest Levels
Contact Rich at: Rich.C@empowergmat.com

Rich Cohen

Co-Founder & GMAT Assassin

Special Offer: Save $75 + GMAT Club Tests Free
  Official GMAT Exam Packs + 70 Pt. Improvement Guarantee
www.empowergmat.com/

***********************Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!***********************

Re: Pam and Robin each roll a pair of fair, six-sided dice. What is the pr   [#permalink] 05 Dec 2017, 12:09
Display posts from previous: Sort by

Pam and Robin each roll a pair of fair, six-sided dice. What is the pr

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.