GMAT Question of the Day: Daily via email | Daily via Instagram New to GMAT Club? Watch this Video

 It is currently 21 Jan 2020, 19:48 ### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

#### Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  # Pam and Robin each roll a pair of fair, six-sided dice. What is the pr

Author Message
TAGS:

### Hide Tags

Math Expert V
Joined: 02 Sep 2009
Posts: 60555
Pam and Robin each roll a pair of fair, six-sided dice. What is the pr  [#permalink]

### Show Tags

9
42 00:00

Difficulty:   95% (hard)

Question Stats: 19% (02:15) correct 81% (01:45) wrong based on 318 sessions

### HideShow timer Statistics

Pam and Robin each roll a pair of fair, six-sided dice. What is the probability that Pam and Robin will both roll the same set of two numbers?

A. 1/216

B. 1/36

C. 5/108

D. 11/216

E. 1/18

_________________
Target Test Prep Representative G
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2806
Re: Pam and Robin each roll a pair of fair, six-sided dice. What is the pr  [#permalink]

### Show Tags

11
5
Bunuel wrote:
Pam and Robin each roll a pair of fair, six-sided dice. What is the probability that Pam and Robin will both roll the same set of two numbers?

A. 1/216

B. 1/36

C. 5/108

D. 11/216

E. 1/18

We need to determine the probability that when Pam and Robin each rolls a pair of fair, six-sided dice, they both roll the same set of numbers. There are two scenarios: when Pam and Robin both roll the same two numbers and when they roll two distinct numbers.

Scenario 1: When the two numbers on the dice are the same

Let’s say they both roll 1s. That is, Pam rolls (1, 1) and Robin rolls (1, 1). The probability of this happening is

1/6 x 1/6 x 1/6 x 1/6 = 1/(6^4)

Since the probability is the same for all 6 pairs of numbers, the probability of their rolling the same numbers is 6 x 1/(6^4) = 1/(6^3) = 1/216.

Scenario 2: When the two numbers on the dice are distinct

There are 6 x 5 = 30 ways to roll two distinct numbers when rolling two dice.
Let’s say Pam rolls (1, 2) and Robin also rolls (1, 2). The probability of this happening is:

1/6 x 1/6 x 1/6 x 1/6 = 1/(6^4)

However, if Pam rolls (1, 2) and Robine rolls (2,1), those are still considered the same set of numbers, and the probability of that occurring is also 1/(6^4).

Therefore, for each pair of distinct numbers rolled, the probability is 2 x 1/(6^4) = 2/(6^4). Since there are 30 such pairs, the overall probability is 30 x 2/(6^4) = 60/(^4) = 10/(6^3) = 10/216.

Finally, since the events in option 1 and those in option 2 are mutually exclusive, we use the addition rule of probability. That is, the probability that Pam and Robin will both roll the same set of two numbers is:

1/216 + 10/216 = 11/216

_________________

# Jeffrey Miller

Jeff@TargetTestPrep.com

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

If you find one of my posts helpful, please take a moment to click on the "Kudos" button.

##### General Discussion
Manager  B
Joined: 06 Dec 2016
Posts: 227
Re: Pam and Robin each roll a pair of fair, six-sided dice. What is the pr  [#permalink]

### Show Tags

I'm not sure if my approach is right.

6/36 x 6/36 = 1/6 x 1 /6 = 1/36. I think the answer is B. I am not sure though.
Intern  S
Joined: 05 Sep 2016
Posts: 19
Location: Israel
Concentration: Economics, Technology
WE: Engineering (Telecommunications)
Re: Pam and Robin each roll a pair of fair, six-sided dice. What is the pr  [#permalink]

### Show Tags

2
1
The answer should be D. 11/216.
There are 2 cases:
1. Both dices show the same number, so it's 6 out of 36. Then for the other player the probability to roll the same number is 1/6 x 1/6.
2. There are 30 out of 36 options for the dices to be different numbers. The probability for the other player to roll the same is 2/6 x 1/6.

Probability = 1/6 x 1/6 x 1/6 + 5/6 x 2/6 x 1/6 = 11/216

Sent from my Redmi 4 using GMAT Club Forum mobile app
Senior SC Moderator V
Joined: 14 Nov 2016
Posts: 1344
Location: Malaysia
Pam and Robin each roll a pair of fair, six-sided dice. What is the pr  [#permalink]

### Show Tags

kolodits wrote:
The answer should be D. 11/216.
There are 2 cases:
1. Both dices show the same number, so it's 6 out of 36. Then for the other player the probability to roll the same number is 1/6 x 1/6.
2. There are 30 out of 36 options for the dices to be different numbers. The probability for the other player to roll the same is 2/6 x 1/6.

$$Probability = \frac{1}{6} * \frac{1}{6} * \frac{1}{6} + \frac{5}{6} * \frac{2}{6} * \frac{1}{6} = \frac{11}{216}$$

Sent from my Redmi 4 using GMAT Club Forum mobile app

Dear kolodits, How do you able to get the value for $$\frac{2}{6}$$?
_________________
"Be challenged at EVERY MOMENT."

“Strength doesn’t come from what you can do. It comes from overcoming the things you once thought you couldn’t.”

"Each stage of the journey is crucial to attaining new heights of knowledge."

Intern  S
Joined: 05 Sep 2016
Posts: 19
Location: Israel
Concentration: Economics, Technology
WE: Engineering (Telecommunications)
Re: Pam and Robin each roll a pair of fair, six-sided dice. What is the pr  [#permalink]

### Show Tags

ziyuen wrote:
kolodits wrote:
The answer should be D. 11/216.
There are 2 cases:
1. Both dices show the same number, so it's 6 out of 36. Then for the other player the probability to roll the same number is 1/6 x 1/6.
2. There are 30 out of 36 options for the dices to be different numbers. The probability for the other player to roll the same is 2/6 x 1/6.

$$Probability = \frac{1}{6} * \frac{1}{6} * \frac{1}{6} + \frac{5}{6} * \frac{2}{6} * \frac{1}{6} = \frac{11}{216}$$

Sent from my Redmi 4 using GMAT Club Forum mobile app

Dear kolodits, How do you able to get the value for $$\frac{2}{6}$$?

The second player roll the first dice. It should be equal to one of the dices the first player rolled. It doesn't matter which one, so there are 2 options out of 6. For the second dice there is only 1 option left, which makes it: 2/6 * 1/6.

Sent from my Redmi 4 using GMAT Club Forum mobile app
Intern  B
Joined: 25 Dec 2016
Posts: 17
Location: United States (GA)
Concentration: Healthcare, Entrepreneurship
GMAT 1: 770 Q51 V42
GPA: 3.64
WE: Medicine and Health (Health Care)
Re: Pam and Robin each roll a pair of fair, six-sided dice. What is the pr  [#permalink]

### Show Tags

1
1
At first I misread and thought it was asking for the same sum of the pairs of dice which would yield a different answer.

There are two cases. The first is when the first person rolls two different numbers. This happens 5/6 of the time. The second is when the first person rolls the same number on both die. This happens 1/6 of the time.

In the first case, the second person has a 2/6 chance to roll one of the two numbers that the first person rolled with the first die. If the first die is one of the two numbers, then the second person only has a 1/6 chance for the second die to match up. This means that in the first case, the second person has a 2/6 * 1/6 = 1/18 chance to have the same roll. This applies 5/6 of the time.

In the second case, both dice must match, so the second person has a 1/6 chance to roll the same number with each of the two die. This means the total probability is 1/6 * 1/6 = 1/36. This applies 1/6 of the time.

This means that the total probability is 5/6*1/18 + 1/6*1/36 = 5/108 + 1/216 = 10/216 + 1/216 = 11/216. Answer is D
Manager  B
Joined: 08 Jul 2016
Posts: 69
Location: United States (NY)
GMAT 1: 710 Q49 V36 Pam and Robin each roll a pair of fair, six-sided dice. What is the pr  [#permalink]

### Show Tags

1
JeffTargetTestPrep wrote:
Bunuel wrote:
Pam and Robin each roll a pair of fair, six-sided dice. What is the probability that Pam and Robin will both roll the same set of two numbers?

A. 1/216

B. 1/36

C. 5/108

D. 11/216

E. 1/18

We need to determine the probability that when Pam and Robin each rolls a pair of fair, six-sided dice, they both roll the same set of numbers. There are two scenarios: when Pam and Robin both roll the same two numbers and when they roll two distinct numbers.

Scenario 1: When the two numbers on the dice are the same

Let’s say they both roll 1s. That is, Pam rolls (1, 1) and Robin rolls (1, 1). The probability of this happening is

1/6 x 1/6 x 1/6 x 1/6 = 1/(6^4)

Since the probability is the same for all 6 pairs of numbers, the probability of their rolling the same numbers is 6 x 1/(6^4) = 1/(6^3) = 1/216.

Scenario 2: When the two numbers on the dice are distinct

There are 6 x 5 = 30 ways to roll two distinct numbers when rolling two dice.
Let’s say Pam rolls (1, 2) and Robin also rolls (1, 2). The probability of this happening is:

1/6 x 1/6 x 1/6 x 1/6 = 1/(6^4)

However, if Pam rolls (1, 2) and Robine rolls (2,1), those are still considered the same set of numbers, and the probability of that occurring is also 1/(6^4).

Therefore, for each pair of distinct numbers rolled, the probability is 2 x 1/(6^4) = 2/(6^4). Since there are 30 such pairs, the overall probability is 30 x 2/(6^4) = 60/(^4) = 10/(6^3) = 10/216.

Finally, since the events in option 1 and those in option 2 are mutually exclusive, we use the addition rule of probability. That is, the probability that Pam and Robin will both roll the same set of two numbers is:

1/216 + 10/216 = 11/216

If we are already considering (1,2) and (2,1) to be the same set while calculating probability then why do we have total number of pairs = 30? Shouldn't it be 15?
Manager  B
Joined: 01 Feb 2015
Posts: 64
Re: Pam and Robin each roll a pair of fair, six-sided dice. What is the pr  [#permalink]

### Show Tags

jpeeples85 wrote:
At first I misread and thought it was asking for the same sum of the pairs of dice which would yield a different answer.

There are two cases. The first is when the first person rolls two different numbers. This happens 5/6 of the time. The second is when the first person rolls the same number on both die. This happens 1/6 of the time.

In the first case, the second person has a 2/6 chance to roll one of the two numbers that the first person rolled with the first die. If the first die is one of the two numbers, then the second person only has a 1/6 chance for the second die to match up. This means that in the first case, the second person has a 2/6 * 1/6 = 1/18 chance to have the same roll. This applies 5/6 of the time.

In the second case, both dice must match, so the second person has a 1/6 chance to roll the same number with each of the two die. This means the total probability is 1/6 * 1/6 = 1/36. This applies 1/6 of the time.

This means that the total probability is 5/6*1/18 + 1/6*1/36 = 5/108 + 1/216 = 10/216 + 1/216 = 11/216. Answer is D

1/6 of the time? 5/6 of the time? How are you saying that? can you please explain?
EMPOWERgmat Instructor V
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 15958
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Re: Pam and Robin each roll a pair of fair, six-sided dice. What is the pr  [#permalink]

### Show Tags

3
4
Hi All,

This is a tougher probability question than average (and you likely will not see this exact situation on Test Day). This is meant to say that you shouldn't be too concerned about this prompt until you're picking up points in all the other 'gettable' areas first.

That having been said, the 'quirk' with this question is that you have to account for the probability of rolling two dice and getting the same number on both dice vs. getting two different numbers.

When rolling two dice, there are 36 possible outcomes:
-6 outcomes have the same number twice (1-1, 2-2, etc.)
-30 outcomes have two different numbers (1-4, 3-2, 5-1, etc.)

Thus, 6/36 = 1/6 of the outcomes are the same number twice
30/36 = 5/6 of the outcomes are two different numbers

IF Pam rolled 5-5, then Robin would have to also roll 5-5. The probability of that occurring would be: (1/6)(1/6) = 1/36.

IF Pam rolled 2-6, then Robin has two different ways to match up (2-6 OR 6-2). The probability of that occurring would be (2/6)(1/6) = 2/36 = 1/18

Accounting for all possible outcomes, the probability of Pam and Robin rolling the same result would be:
(1/6)(1/36) + (5/6)(1/18) =
1/216 + 5/108 =
1/216 + 10/216 =
11/216

GMAT assassins aren't born, they're made,
Rich
_________________
Intern  B
Joined: 10 Apr 2013
Posts: 3
Re: Pam and Robin each roll a pair of fair, six-sided dice. What is the pr  [#permalink]

### Show Tags

EMPOWERgmatRichC wrote:
Hi All,
Accounting for all possible outcomes, the probability of Pam and Robin rolling the same result would be:
(1/6)(1/36) + (5/6)(1/18) =
1/216 + 5/108 =
1/216 + 10/216 =
11/216

EMPOWERgmat Instructor V
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 15958
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Re: Pam and Robin each roll a pair of fair, six-sided dice. What is the pr  [#permalink]

### Show Tags

1
xclsx wrote:
EMPOWERgmatRichC wrote:
Hi All,
Accounting for all possible outcomes, the probability of Pam and Robin rolling the same result would be:
(1/6)(1/36) + (5/6)(1/18) =
1/216 + 5/108 =
1/216 + 10/216 =
11/216

Hi xclsx,

We have to account for two possible situations (since Pam's roll dictates the probability that Robin's roll will match) : Pam rolls the same number on both dice or Pam rolls two different numbers. The probabilities that you highlighted in red are those two probabilities: there's a 1/6 chance that it's the same number twice and a 5/6 chance that it's two different numbers.

GMAT assassins aren't born, they're made,
Rich
_________________
GMATH Teacher P
Status: GMATH founder
Joined: 12 Oct 2010
Posts: 935
Re: Pam and Robin each roll a pair of fair, six-sided dice. What is the pr  [#permalink]

### Show Tags

Bunuel wrote:
Pam and Robin each roll a pair of fair, six-sided dice. What is the probability that Pam and Robin will both roll the same set of two numbers?

A. 1/216

B. 1/36

C. 5/108

D. 11/216

E. 1/18

$$? = {{\# \,\,{\rm{favorables}}} \over {\# \,\,{\rm{total}}\,\,\left( {{\rm{equiprobables}}} \right)}}$$

$$\# \,\,{\rm{total}}\,\,\left( {{\rm{equiprobables}}} \right) = {6^2} \cdot {6^2}\,\,\,\,\left( {{\rm{taking}}\,\,{\rm{results}}\,\,{\rm{in}}\,\,{\rm{order,}}\,\,{\rm{for}}\,\,{\rm{both}}\,\,{\rm{players}}} \right)$$

$$\# \,\,{\rm{favorables}}\,\,\, = \,\,\,\left\{ \matrix{ \,6\,\,::\,\,{\rm{first}}\,\,{\rm{player}}\,\,{\rm{gets}}\,\,{\rm{same}}\,\,{\rm{number}}\,\,{\rm{twice,}}\,\,{\rm{second}}\,\,{\rm{player}}\,\,{\rm{gets}}\,\,{\rm{same}}\,\,{\rm{ones}} \hfill \cr \,\,\, + \,\,\,\,\,\left( {{\rm{mutually}}\,\,{\rm{exclusive}}\,{\rm{!}}} \right) \hfill \cr \,\left( {36 - 6} \right) \cdot 2!\,\,\,::\,\,\,{\rm{first}}\,\,{\rm{gets}}\,\,\left( {x,y} \right)\,\,{\rm{with}}\,\,x \ne y\,\,,\,\,{\rm{second}}\,\,{\rm{gets}}\,\,\left( {x,y} \right)\,\,{\rm{or}}\,\,\left( {y,x} \right) \hfill \cr} \right.$$

$$? = {{66} \over {{6^4}}} = {{11} \over {{6^3}}} = {{11} \over {216}}$$

This solution follows the notations and rationale taught in the GMATH method.

Regards,
Fabio.
_________________
Fabio Skilnik :: GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here: https://gmath.net
Manager  G
Joined: 28 Jan 2017
Posts: 151
WE: Consulting (Computer Software)
Re: Pam and Robin each roll a pair of fair, six-sided dice. What is the pr  [#permalink]

### Show Tags

Bunuel wrote:
Pam and Robin each roll a pair of fair, six-sided dice. What is the probability that Pam and Robin will both roll the same set of two numbers?

A. 1/216

B. 1/36

C. 5/108

D. 11/216

E. 1/18

My way of doing this:

Total cases : 6^2 * 6^2= 36*36
Now required cases:
1. Both dices have same number for both the person. Example (1,1) and (1,1)
Such 6 cases.
2. Different number in 2 dice example (1,2) and (1,2)- This can have 4 arrangements, (1,2)(1,2), (1,2)(2,1),(2,1)(1,2),(2,1)(2,1)
and total number of ways to pick these types are 6C2.

so total cases = 6 + 6C2 * 4

Required probability = ( 6 + 6C2 * 4) / ( 36*36 ) = 11/216 Re: Pam and Robin each roll a pair of fair, six-sided dice. What is the pr   [#permalink] 20 Feb 2019, 11:43
Display posts from previous: Sort by

# Pam and Robin each roll a pair of fair, six-sided dice. What is the pr  