Bunuel
The symphony sells two kinds of tickets: orchestra, for $40, and upper tiers, for $25. On a certain night, the symphony sells 90 tickets and gets $2625 in revenue from the sales. How many orchestra tickets did they sell?
A. 25
B. 35
C. 45
D. 55
E. 65
Kudos for a correct solution.
MAGOOSH OFFICIAL SOLUTION:Notice, in verbal form, this is a two-equations-two variables problem. The two variables are x = the number of orchestra tickets, and y = the number of upper tier tickets.
One equation we get is x + y = 90, for the total number of tickets sold. That’s one equation. If we sell x orchestra tickets, we get $40 for each, so we get 40x in total revenue from all of the orchestra tickets. Similarly, we get 25y in total revenue from all the upper tier tickets. Thus, the total revenue is 40x + 25y = 2625. That’s our second equation.
The first equation is incredibly convenient to multiply. I would rather multiply by 40 than by 25, so I make the coefficients of x match. I’ll multiply the first equation by 40, and the second equation by –1.
40x + 40y = 3600
(-40x - 25y = 2625)
_______________
15y = 975
Now, at first blush, that might look like an ugly division problem awaiting us, 975 divided by 15. Let’s break it down a bit. I know 900/3 = 300, and 75/3 = 25, so if I divide both sides by 3, I get
5y = 975/3 = 325
Now, 100/5 = 20, so three times that is 300/5 = 60. Of course, 25/5 = 5, so
y = 325/5 = 65
We want x, so x + (65) = 90 right x = 25, answer = A.
BTW, if these steps totally elude you, remember you can always backsolve from the numerical answers as a backup strategy.