Last visit was: 19 Nov 2025, 07:47 It is currently 19 Nov 2025, 07:47
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
guerrero25
Joined: 10 Apr 2012
Last visit: 13 Nov 2019
Posts: 244
Own Kudos:
5,061
 [279]
Given Kudos: 325
Location: United States
Concentration: Technology, Other
GPA: 2.44
WE:Project Management (Telecommunications)
Posts: 244
Kudos: 5,061
 [279]
17
Kudos
Add Kudos
262
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,389
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,389
Kudos: 778,253
 [98]
36
Kudos
Add Kudos
61
Bookmarks
Bookmark this Post
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,267
Own Kudos:
76,994
 [48]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 76,994
 [48]
20
Kudos
Add Kudos
28
Bookmarks
Bookmark this Post
User avatar
WholeLottaLove
Joined: 13 May 2013
Last visit: 13 Jan 2014
Posts: 305
Own Kudos:
627
 [25]
Given Kudos: 134
Posts: 305
Kudos: 627
 [25]
15
Kudos
Add Kudos
9
Bookmarks
Bookmark this Post
You have |x+3| - |4-x| = |8+x|

First, look at the three values independently of their absolute value sign, in other words:
|x+3| - |4-x| = |8+x|
(x+3) - (4-x) = (8+x)

Now, you're looking at x < - 8, so x is a number less than -8. Let's pretend x = -10 here to make things a bit easier to understand.

when x=-10

I.) (x+3)
(-10+3)
(-7)


II.) (4-x)
(4-[-10]) (double negative, so it becomes positive)
(4+10)
(14)

III.) (8+x)
(8+-10)
(-2)

In other words, when x < -8, (x+3) and (8+x) are NEGATIVE. To solve problems like this, we need to check for the sign change.

Here is how I do it step by step.

I.) |x+3| - |4-x| = |8+x|

II.) IGNORE absolute value signs (for now) and find the values of x which make (x+3), (4-x) and (8+x) = to zero as follows:

(x+3)
x=-3
(-3+3) = 0

(4-x)
x=4
(4-4) = 0

(8+x)
x=-8
(8+-8) = 0

Order them from least to greatest: x=-8, x=-3, x=4 These become our ranges for x as follows:

x<-8
-8≤x<-3
-3≤x<4
x>4

So, we test values less than the smallest number, values of x between the smallest and largest number, and values of x greater than the greatest number.

So, now we test the original (x+3) - (4-x) = (8+x) with x values. This is where the sign changes in the equation become important. We need to find the number of solutions for this problem so we need to see for which values of x the problem is valid or not valid. For example:

When x < -8

(x+3) is a negative number
(4-x) is a positive number
(8+x) is a negative number

So

-(x+3) - (4-x) = -(8+x)
-x-3 -4+x = -8-x
-7=-8-x
1=-x
x=-1

Now, we are looking at values for x < -8, yet the result we got was x = -1. -1 DOES NOT fall in the range or x < -1. If you don't understand why simply draw a number line, mark down x< -8 and x=-1. Is -1 less than -8? Nope! Therefore, -1 is NOT a valid solution.

You can repeat this step for the remaining ranges of x.

I hope this helped you! :-D



rrsnathan
VeritasPrepKarishma
guerrero25
I am trying to understand the Modules questions - I took this from GMAT club's quant book .

Q. |x+3| - |4-x| = |8+x|. How many solutions does the equation have?

I could not follow why the equal signs are considered ? e.g -8 <= x < -3 , -3 <= x < 4, x >=4 ..Appreciate if someone can explain the logic?


Solution: There are 3 key points here: -8, -3, 4. So we have 4 conditions:

a) x < -8. -(x+3) - (4-x) = -(8+x) --> x = -1. We reject the solution because our condition is not satisfied (-1 is not less than -8)

b) -8 <= x < -3. -(x+3) - (4-x) = (8+x) --> x = -15. We reject the solution because our condition is not satisfied (-15 is not within (-8,-3) interval.)

c) -3 <= x < 4 (x+3) - (4-x) = (8+x) --> x = 9. We reject the solution because our condition is not satisfied (-15 is not within (-3,4) interval.)

d) x >=4. (x+3) + (4-x) = (8+x) --> x = -1. We reject the solution because our condition is not satisfied (-1 is not more than 4)

thanks !

|x| = x when x >= 0 (x is either positive or 0)
|x| = -x when x < 0 (note here that you can put the equal to sign here as well x <= 0 because if x = 0,
|0| = 0 = -0 (all are the same)
So the '=' sign can be put with x > 0 or with x < 0. We usually put it with 'x > 0' for consistency.

When we are considering ranges, say,
x < -8 ------ x is less than -8
-8 <= x < -3 ------- x is greater than or equal to -8 but less than -3
-3 <= x < 4 ------- x is greater than or equal to -3 but less than 4
x >=4 -------- x is greater than or equal to 4

We need to include the transition points (-8, -3, 4) somewhere so we include them with greater than sign.

Mind you, we could have taken the ranges as
x <= -8
-8 < x <= -3
-3 < x <= 4
x > 4

The only point is that we don't include the transition points twice.

Hope the role of '=' sign is clear.


Hi Have a small doubt sounds silly but i need to understand this basic.
I could understand this part "There are 3 key points here: -8, -3, 4".
But why is that for all the cases like a) x < -8. -(x+3) - (4-x) = -(8+x) negative sign is added before the three brackets?

Thanks in advance,
RRSNATHAN.
General Discussion
User avatar
johnwesley
Joined: 24 Jan 2013
Last visit: 20 Nov 2013
Posts: 61
Own Kudos:
414
 [9]
Given Kudos: 6
Posts: 61
Kudos: 414
 [9]
3
Kudos
Add Kudos
6
Bookmarks
Bookmark this Post
You do it in the proper way. This method is called the "critical values" method. And once you have the critical values (by doing each absolute term equal to zero), you have to place them in the Real numbers line to make all the possible intervals. Then you just do the intervals as follows: x<lowest number in your real line, and then you take the intervals from each critical value to before the next one: i.e. x<-8, -8<=x<-3, -3<=x<4, x<=4. Therefore, you are getting all the possible intervals in the real line, and splitting the intervals from one critical value (including it) to before the next critical value (not including it).

Then, as you have done, you just set the predominant sign for each term under each condition, you solve the equation, and finally you check if the result saqtisfies the condition.
User avatar
WholeLottaLove
Joined: 13 May 2013
Last visit: 13 Jan 2014
Posts: 305
Own Kudos:
627
 [11]
Given Kudos: 134
Posts: 305
Kudos: 627
 [11]
4
Kudos
Add Kudos
7
Bookmarks
Bookmark this Post
Can someone tell me if this approach is correct?

|x+3|-|4-x|=|8+x|

So we have:

x=-3
x=4
x=-8

x<-8
-(x+3) - (4+x) = -(8+x)
-x-3 - 4 - x = -8-x
-2x-7=-8-x
1=x (fails, as x is 1 when it must be less than -8)

-8<x<-3
-(x+3) - (4-x) = (8+x)
-x-3 -4+x=8+x
-7=8+x
-15=x (fails, as x is -15 when it must be between -8 and -3)

-3<x<4
(x+3)-(4+x)=8+x
-1=8+x
-9=x (fails, as x is -9 when it must be between -3 and 4)

x>4
(x+3) - -(4-x) = (8+x)
x+3 - (-4+x) = (8+x)
x+3 +4-x=8+x
7=8+x
x=-1 (fails, as x=-1 when it must be greater than 4)

Is this correct?

Thanks!
User avatar
rrsnathan
Joined: 30 May 2013
Last visit: 04 Aug 2014
Posts: 121
Own Kudos:
456
 [2]
Given Kudos: 72
Location: India
Concentration: Entrepreneurship, General Management
GPA: 3.82
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
VeritasPrepKarishma
guerrero25
I am trying to understand the Modules questions - I took this from GMAT club's quant book .

Q. |x+3| - |4-x| = |8+x|. How many solutions does the equation have?

I could not follow why the equal signs are considered ? e.g -8 <= x < -3 , -3 <= x < 4, x >=4 ..Appreciate if someone can explain the logic?


Solution: There are 3 key points here: -8, -3, 4. So we have 4 conditions:

a) x < -8. -(x+3) - (4-x) = -(8+x) --> x = -1. We reject the solution because our condition is not satisfied (-1 is not less than -8)

b) -8 <= x < -3. -(x+3) - (4-x) = (8+x) --> x = -15. We reject the solution because our condition is not satisfied (-15 is not within (-8,-3) interval.)

c) -3 <= x < 4 (x+3) - (4-x) = (8+x) --> x = 9. We reject the solution because our condition is not satisfied (-15 is not within (-3,4) interval.)

d) x >=4. (x+3) + (4-x) = (8+x) --> x = -1. We reject the solution because our condition is not satisfied (-1 is not more than 4)

thanks !

|x| = x when x >= 0 (x is either positive or 0)
|x| = -x when x < 0 (note here that you can put the equal to sign here as well x <= 0 because if x = 0,
|0| = 0 = -0 (all are the same)
So the '=' sign can be put with x > 0 or with x < 0. We usually put it with 'x > 0' for consistency.

When we are considering ranges, say,
x < -8 ------ x is less than -8
-8 <= x < -3 ------- x is greater than or equal to -8 but less than -3
-3 <= x < 4 ------- x is greater than or equal to -3 but less than 4
x >=4 -------- x is greater than or equal to 4

We need to include the transition points (-8, -3, 4) somewhere so we include them with greater than sign.

Mind you, we could have taken the ranges as
x <= -8
-8 < x <= -3
-3 < x <= 4
x > 4

The only point is that we don't include the transition points twice.

Hope the role of '=' sign is clear.


Hi Have a small doubt sounds silly but i need to understand this basic.
I could understand this part "There are 3 key points here: -8, -3, 4".
But why is that for all the cases like a) x < -8. -(x+3) - (4-x) = -(8+x) negative sign is added before the three brackets?

Thanks in advance,
RRSNATHAN.
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,267
Own Kudos:
76,994
 [6]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 76,994
 [6]
5
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
rrsnathan
VeritasPrepKarishma
guerrero25
I am trying to understand the Modules questions - I took this from GMAT club's quant book .

Q. |x+3| - |4-x| = |8+x|. How many solutions does the equation have?

I could not follow why the equal signs are considered ? e.g -8 <= x < -3 , -3 <= x < 4, x >=4 ..Appreciate if someone can explain the logic?


Solution: There are 3 key points here: -8, -3, 4. So we have 4 conditions:

a) x < -8. -(x+3) - (4-x) = -(8+x) --> x = -1. We reject the solution because our condition is not satisfied (-1 is not less than -8)

b) -8 <= x < -3. -(x+3) - (4-x) = (8+x) --> x = -15. We reject the solution because our condition is not satisfied (-15 is not within (-8,-3) interval.)

c) -3 <= x < 4 (x+3) - (4-x) = (8+x) --> x = 9. We reject the solution because our condition is not satisfied (-15 is not within (-3,4) interval.)

d) x >=4. (x+3) + (4-x) = (8+x) --> x = -1. We reject the solution because our condition is not satisfied (-1 is not more than 4)

thanks !

|x| = x when x >= 0 (x is either positive or 0)
|x| = -x when x < 0 (note here that you can put the equal to sign here as well x <= 0 because if x = 0,
|0| = 0 = -0 (all are the same)
So the '=' sign can be put with x > 0 or with x < 0. We usually put it with 'x > 0' for consistency.

When we are considering ranges, say,
x < -8 ------ x is less than -8
-8 <= x < -3 ------- x is greater than or equal to -8 but less than -3
-3 <= x < 4 ------- x is greater than or equal to -3 but less than 4
x >=4 -------- x is greater than or equal to 4

We need to include the transition points (-8, -3, 4) somewhere so we include them with greater than sign.

Mind you, we could have taken the ranges as
x <= -8
-8 < x <= -3
-3 < x <= 4
x > 4

The only point is that we don't include the transition points twice.

Hope the role of '=' sign is clear.


Hi Have a small doubt sounds silly but i need to understand this basic.
I could understand this part "There are 3 key points here: -8, -3, 4".
But why is that for all the cases like a) x < -8. -(x+3) - (4-x) = -(8+x) negative sign is added before the three brackets?

Thanks in advance,
RRSNATHAN.

|x+3|-|4-x|=|8+x|
|x+3|-|x-4|=|x+8| (since it is a mod, |4-x| is the same as |x-4|)

Now key points are -8, -3 and 4.

When x <= -8, all three expressions (x + 3), (x - 4) and (x + 8) are negative when x <= -8.
So |x+3| = - (x + 3) (using the definition of mod)
|x-4| = - (x - 4)
|x+8| = - (x + 8)

Definition of mod:
|x| = x when x >= 0 (x is either positive or 0)
|x| = -x when x < 0
avatar
kingflo
avatar
Current Student
Joined: 26 Jun 2012
Last visit: 06 Jul 2021
Posts: 24
Own Kudos:
621
 [5]
Given Kudos: 1
Location: Germany
Concentration: Leadership, Finance
GMAT 1: 570 Q31 V39
GMAT 2: 710 Q43 V44
GMAT 2: 710 Q43 V44
Posts: 24
Kudos: 621
 [5]
3
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
Dear all,

I have understood the concept of critical points and applied it successfully when solving this question. My problem is time. It took me well over 3min to solve this question.
Can someone check my method and tell me where I am losing the time or on which part I might be able to speed up/take a shortcut?

What I did:
1. Find special points at first glance --> -8, -3, 4
2. Set up equation for x < -8 and solve --> x=9 which is not in defined range --> stop
3. Set up equation for -8 <= x < -3 and solve --> x=-7/3 which is not in defined range --> stop
4. Set up equation for -3 <= x < 4 and solve --> x=-1 which IS in defined range --> check in original equation --> -3 = 7 --> no solution
5. Set up equation for x => 4 and solve --> x=9 which IS in defined range --> check in original equation --> 7 = 17 --> no solution
6. Answer is zero solutions --> A

Thanks a lot!
avatar
MadCowMartin
Joined: 13 Jun 2013
Last visit: 21 Jul 2013
Posts: 5
Own Kudos:
Given Kudos: 8
Posts: 5
Kudos: 2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I am stuck on this part in the Gmat Club book. I do understand how the conditions are set. But I can't figure out how the values for x were determined in those conditions. Ill use just a and b:

a) x < -8. -(x+3) - (4-x) = -(8+x) --> x = -1. We reject the solution because our condition is not satisfied (-1 is not less than -8)
b) -8 <= x < -3. -(x+3) - (4-x) = (8+x) --> x = -15. We reject the solution because our condition is not satisfied (-15 is not within (-8,-3) interval.)

Where do the x = ' ' values come from? I have been staring at this for half an hour.
I understood the whole concept in the '3-steps approach' but the '3-steps approach for complex problems' has me stuck suddenly. There goes mij GMAT-Mojo! Anyone able to help me get it back? Thanks.


BTW: Is this 650+ level?
avatar
kpali
Joined: 22 May 2013
Last visit: 20 Dec 2014
Posts: 35
Own Kudos:
35
 [4]
Given Kudos: 10
Concentration: General Management, Technology
GPA: 3.9
WE:Information Technology (Computer Software)
Posts: 35
Kudos: 35
 [4]
4
Kudos
Add Kudos
Bookmarks
Bookmark this Post
MadCowMartin
I am stuck on this part in the Gmat Club book. I do understand how the conditions are set. But I can't figure out how the values for x were determined in those conditions. Ill use just a and b:

a) x < -8. -(x+3) - (4-x) = -(8+x) --> x = -1. We reject the solution because our condition is not satisfied (-1 is not less than -8)
b) -8 <= x < -3. -(x+3) - (4-x) = (8+x) --> x = -15. We reject the solution because our condition is not satisfied (-15 is not within (-8,-3) interval.)

Where do the x = ' ' values come from? I have been staring at this for half an hour.
I understood the whole concept in the '3-steps approach' but the '3-steps approach for complex problems' has me stuck suddenly. There goes mij GMAT-Mojo! Anyone able to help me get it back? Thanks.


BTW: Is this 650+ level?

Well look at the question again, its :

|x+3| – |4-x| = |8+x|
Lets try to make all the terms positive first,

|x+3| = |x+8| + |x-4| ( since |x-a| = |a-x|)

Now you can see that for |x+3|, it will be have differently for

x>-3 and x<-3

since, refer to the property |x| = x for x>=0, and |x| = -x for x<0

hence, same way for |x+8|, will behave differently for x>-8 and x<-8

and for |x-4| will behave differently for x>4 and x<4

therefore, we get our conditions : (put it on the number line for clarity)

Hope this helps.
Attachments

Capture.PNG
Capture.PNG [ 4.12 KiB | Viewed 64582 times ]

User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,267
Own Kudos:
76,994
 [3]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 76,994
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
MadCowMartin
I am stuck on this part in the Gmat Club book. I do understand how the conditions are set. But I can't figure out how the values for x were determined in those conditions. Ill use just a and b:

a) x < -8. -(x+3) - (4-x) = -(8+x) --> x = -1. We reject the solution because our condition is not satisfied (-1 is not less than -8)
b) -8 <= x < -3. -(x+3) - (4-x) = (8+x) --> x = -15. We reject the solution because our condition is not satisfied (-15 is not within (-8,-3) interval.)

Where do the x = ' ' values come from? I have been staring at this for half an hour.
I understood the whole concept in the '3-steps approach' but the '3-steps approach for complex problems' has me stuck suddenly. There goes mij GMAT-Mojo! Anyone able to help me get it back? Thanks.


BTW: Is this 650+ level?

You solve the equation to get the x = values

First of all, you are given |x+3|-|4-x|=|8+x|
Convert this to |x+3|-|x-4|=|x+8| (since it is a mod, |4-x| is the same as |x-4|)

Now key points are -8, -3 and 4.

Case a: x< -8
When x < -8, all three expressions (x + 3), (x - 4) and (x + 8) are negative.

So |x+3| = - (x + 3) (using the definition of mod)
|x-4| = - (x - 4)
|x+8| = - (x + 8)

-(x+3) - [-(x-4)] = -(x+8)
-7 = -x - 8
x = -1
Condition not satisfied so rejected.

And no, it is 750+ level.
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,267
Own Kudos:
76,994
 [4]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 76,994
 [4]
2
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
VeritasPrepKarishma

|x| = x when x >= 0 (x is either positive or 0)
|x| = -x when x < 0 (note here that you can put the equal to sign here as well x <= 0 because if x = 0,
|0| = 0 = -0 (all are the same)
So the '=' sign can be put with x > 0 or with x < 0. We usually put it with 'x > 0' for consistency.

When we are considering ranges, say,
x < -8 ------ x is less than -8
-8 <= x < -3 ------- x is greater than or equal to -8 but less than -3
-3 <= x < 4 ------- x is greater than or equal to -3 but less than 4
x >=4 -------- x is greater than or equal to 4

We need to include the transition points (-8, -3, 4) somewhere so we include them with greater than sign.

Mind you, we could have taken the ranges as
x <= -8
-8 < x <= -3
-3 < x <= 4
x > 4

The only point is that we don't include the transition points twice.

Hope the role of '=' sign is clear.


Quote:

In GMATCLUB Maths book it is given that to solve any Modulus Questions we need to follow 3 step process. First is by opening the Modulus and exposing to signs. In the problem given below I am not able to deduce, as how to proceed for opening the mod and exposing to signs (both +ve and -ve)
------------------------------
Q: Mod (x+3) - Mod (4-x)= Mod (8+x). How many solutions does the equation have?
------------------------------
As a general approach, the terms in MOD are put in brackets and then solved by putting positive and then negative signs.

The process given in the book is perfectly fine but don't expect it to be 100% mechanical. You will need to evaluate the question every time. You CANNOT just make equations taking +ve and -ve value for every mod and get 2*2*2 = 8 equations. Understand the reason for this.

By definition,
|x+8| = x+8 when x+8 >= 0 i.e. when x >= -8
|x+8| = -(x+8) when x+8 < 0 i.e. when x < -8

Similarly,
|x+3| = x+3 when x+3 >= 0 i.e. when x >= -3
|x+3| = -(x+3) when x+3 < 0 i.e. when x < -3

|x-4| = x-4 when x-4 >= 0 i.e. when x >= 4
|x-4| = -(x-4) when x-4 < 0 i.e. when x < 4

Now think, is it possible that |x+8| = -(x+8) but |x+3| = x+3? No because this will happen only when x < -8 AND x >= -3. There is no such value of x.

As mentioned in the post above - you will have 3 transition points: -8, -3 and 4. In between these ranges, the signs of the 3 mods change.
x < -8 ------ Here, |x+8| = -(x+8), |x+3| = -(x+3), |x-4| = -(x-4). So you make an equation using these.
-8 <= x < -3 ------- Here, |x+8| = (x+8), |x+3| = -(x+3), |x-4| = -(x-4). So you make an equation using these.
-3 <= x < 4 ------- |x+8| = (x+8), |x+3| = (x+3), |x-4| = -(x-4). So you make an equation using these.
x >=4 -------- |x+8| = (x+8), |x+3| = (x+3), |x-4| = (x-4). So you make an equation using these.

The transition points decide the number of equations you will get. If you have 3 transition points, you will get 4 equations. If you have 4 transition points, you will get 5 equations and so on...
User avatar
PerfectScores
Joined: 20 Dec 2013
Last visit: 19 Mar 2025
Posts: 104
Own Kudos:
274
 [2]
Given Kudos: 1
Expert
Expert reply
Posts: 104
Kudos: 274
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
[quote="guerrero25"]|x+3| – |4-x| = |8+x| How many solutions will this equation have?

A. 0
B. 1
C. 2
D. 3
E. 4


|x + 3| = |8 + x| + |4 - x|

Now when |x+ 3| is lesser than |8+x| and |4-x| will always be positive or zero hence this equation will not have any solution.
When |x+3| is greater than |8 + x| which will be when x is lesser than -5.5 then |4 - x| will be greater than |x+3|.

Hence answer is A.
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,267
Own Kudos:
76,994
 [1]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 76,994
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
PerfectScores

Now |x+ 3| will always be lesser than |8+x|

Not necessary.
Put x = -10

|x+3| = |-10 + 3| = 7
|8+x| = |8-10| = 2

It is not necessary that |x+3| will be less than |8+x|.

Note the meaning of absolute value.

|x+3| is the distance of x from -3.
|x+8| is the distance of x from -8.
It is not essential that every point on the number line will be closer to -3 than to -8. All points to the left of -5.5 will be closer to -8 while all points to the right of -5.5 will be closer to -3.
So when x > -5.5, |x+3| < |x+8|
When x < -5.5, |x+3| > |x+8|
User avatar
JapinderKaur
Joined: 19 May 2014
Last visit: 11 Aug 2023
Posts: 23
Own Kudos:
72
 [5]
Given Kudos: 9
Posts: 23
Kudos: 72
 [5]
4
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post

To All who get confused about what sign to put when opening the modulus



This little tip will help you a lot.

After you've determined the critical points, plot them on the number line.

Attachment:
Critical Points on Number Line.PNG
Critical Points on Number Line.PNG [ 2.04 KiB | Viewed 21927 times ]

Now, Check the coefficient of x in each modulus.

For Example, let's take |8+x|. The coefficient of x is +1. Positive. So, on the number line, put a + sign on the Right of the critical point -8, and a - sign on the Left of -8.

Similarly, for |x+3| too, the coefficient of x is positive. Again, we'll put a + sign on the Right of critical point -3, and a - sign on Left of -3.

For |4-x|, the coefficient of x is -1. It's negative. So here the direction of signs will be reversed, that is, we'll put a + sign on Left of critical point 4 and a - sign on Right of 4.

This is what you'll get:

Attachment:
Opening the Modulus.PNG
Opening the Modulus.PNG [ 2.73 KiB | Viewed 21933 times ]

So, now, while opening the modulus, just refer to this plot.

Example:

For -8<=x<=-3
|x+8| will be opened as x+8 [since the graph shows that (x+8) is positive for all x>-8]
|4-x| will be opened as 4-x [since the graph shows that (4-x) is positive for all x<4]
|x+3| will be opened as -(x+3) [as the graph shows that (x+3) is negative for all x<-3]

This plot takes only a second and leaves no chance of confusion about the signs in opening the Modulus.
Kudos
Add Kudos
Bookmarks
Bookmark this Post
VeritasPrepKarishma
MadCowMartin
I am stuck on this part in the Gmat Club book. I do understand how the conditions are set. But I can't figure out how the values for x were determined in those conditions. Ill use just a and b:

a) x < -8. -(x+3) - (4-x) = -(8+x) --> x = -1. We reject the solution because our condition is not satisfied (-1 is not less than -8)
b) -8 <= x < -3. -(x+3) - (4-x) = (8+x) --> x = -15. We reject the solution because our condition is not satisfied (-15 is not within (-8,-3) interval.)

Where do the x = ' ' values come from? I have been staring at this for half an hour.
I understood the whole concept in the '3-steps approach' but the '3-steps approach for complex problems' has me stuck suddenly. There goes mij GMAT-Mojo! Anyone able to help me get it back? Thanks.


BTW: Is this 650+ level?

You solve the equation to get the x = values

First of all, you are given |x+3|-|4-x|=|8+x|
Convert this to |x+3|-|x-4|=|x+8| (since it is a mod, |4-x| is the same as |x-4|)

Now key points are -8, -3 and 4.

Case a: x< -8
When x < -8, all three expressions (x + 3), (x - 4) and (x + 8) are negative.

So |x+3| = - (x + 3) (using the definition of mod)
|x-4| = - (x - 4)
|x+8| = - (x + 8)

-(x+3) - [-(x-4)] = -(x+8)
-7 = -x - 8
x = -1
Condition not satisfied so rejected.

And no, it is 750+ level.


So what you're saying is the order of whats inside the modulus doesnt matter as long as the sign outside changes?
I ask because i was very confused on why in gmat club book they didnt conver 4-x to -(x-4)
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,267
Own Kudos:
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 76,994
Kudos
Add Kudos
Bookmarks
Bookmark this Post
saadis87


So what you're saying is the order of whats inside the modulus doesnt matter as long as the sign outside changes?
I ask because i was very confused on why in gmat club book they didnt conver 4-x to -(x-4)

Note that

|x| = |-x|

If x = 5,
|5| = |-5| = 5

If x = -5,
|-5| = |-(-5)| = 5

In any case, |x| is always same as |-x|. (Note that we are not saying that |x|= x or |x| = -x because that depends on the sign of x)

So |x-4| = |-(x-4)| = |4-x|
avatar
riteshpatnaik
Joined: 05 Jan 2015
Last visit: 19 Jun 2021
Posts: 48
Own Kudos:
Given Kudos: 168
Location: United States
WE:Consulting (Consulting)
Posts: 48
Kudos: 62
Kudos
Add Kudos
Bookmarks
Bookmark this Post
VeritasPrepKarishma
guerrero25
I am trying to understand the Modules questions - I took this from GMAT club's quant book .

Q. |x+3| - |4-x| = |8+x|. How many solutions does the equation have?

I could not follow why the equal signs are considered ? e.g -8 <= x < -3 , -3 <= x < 4, x >=4 ..Appreciate if someone can explain the logic?


Solution: There are 3 key points here: -8, -3, 4. So we have 4 conditions:

a) x < -8. -(x+3) - (4-x) = -(8+x) --> x = -1. We reject the solution because our condition is not satisfied (-1 is not less than -8)

b) -8 <= x < -3. -(x+3) - (4-x) = (8+x) --> x = -15. We reject the solution because our condition is not satisfied (-15 is not within (-8,-3) interval.)

c) -3 <= x < 4 (x+3) - (4-x) = (8+x) --> x = 9. We reject the solution because our condition is not satisfied (-15 is not within (-3,4) interval.)

d) x >=4. (x+3) + (4-x) = (8+x) --> x = -1. We reject the solution because our condition is not satisfied (-1 is not more than 4)

thanks !

|x| = x when x >= 0 (x is either positive or 0)
|x| = -x when x < 0 (note here that you can put the equal to sign here as well x <= 0 because if x = 0,
|0| = 0 = -0 (all are the same)
So the '=' sign can be put with x > 0 or with x < 0. We usually put it with 'x > 0' for consistency.

When we are considering ranges, say,
x < -8 ------ x is less than -8
-8 <= x < -3 ------- x is greater than or equal to -8 but less than -3
-3 <= x < 4 ------- x is greater than or equal to -3 but less than 4
x >=4 -------- x is greater than or equal to 4

We need to include the transition points (-8, -3, 4) somewhere so we include them with greater than sign.

Mind you, we could have taken the ranges as
x <= -8
-8 < x <= -3
-3 < x <= 4
x > 4

The only point is that we don't include the transition points twice.

Hope the role of '=' sign is clear.

Hi, I know how to go about the above problem but the problem is with the signs. I saw this solution also at places but I am confused with the signs

Solution: There are 3 key points here: -8, -3, 4. So we have 4 conditions:

a) x < -8. -(x+3) - (4-x) = -(8+x) --> here x < 0 hence |x| = -x. why |4-x| is –(4-x)

b) -8 <= x < -3. -(x+3) - (4-x) = (8+x) --> here x < 0 hence |x| = -x. why |4-x| is –(4-x) and |8+x| is (8+x)

c) -3 <= x < 4 (x+3) - (4-x) = (8+x) --> here x < 0 hence |x| = -x and x>0, hence |x| = x . why |4-x| is –(4-x) and |8+x| is (8+x)

d) x >=4. (x+3) + (4-x) = (8+x) --> here x>0, hence |x| = x why |4-x| is +(4-x)
The signs are all reverse for – |4-x| & |8+x|of what I started off with. Please help
User avatar
chetan2u
User avatar
GMAT Expert
Joined: 02 Aug 2009
Last visit: 15 Nov 2025
Posts: 11,238
Own Kudos:
43,702
 [1]
Given Kudos: 335
Status:Math and DI Expert
Location: India
Concentration: Human Resources, General Management
GMAT Focus 1: 735 Q90 V89 DI81
Products:
Expert
Expert reply
GMAT Focus 1: 735 Q90 V89 DI81
Posts: 11,238
Kudos: 43,702
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
riteshpatnaik

Hi, I know how to go about the above problem but the problem is with the signs. I saw this solution also at places but I am confused with the signs

Solution: There are 3 key points here: -8, -3, 4. So we have 4 conditions:

a) x < -8. -(x+3) - (4-x) = -(8+x) --> here x < 0 hence |x| = -x. why |4-x| is –(4-x)

b) -8 <= x < -3. -(x+3) - (4-x) = (8+x) --> here x < 0 hence |x| = -x. why |4-x| is –(4-x) and |8+x| is (8+x)

c) -3 <= x < 4 (x+3) - (4-x) = (8+x) --> here x < 0 hence |x| = -x and x>0, hence |x| = x . why |4-x| is –(4-x) and |8+x| is (8+x)

d) x >=4. (x+3) + (4-x) = (8+x) --> here x>0, hence |x| = x why |4-x| is +(4-x)
The signs are all reverse for – |4-x| & |8+x|of what I started off with. Please help

Hi,

you have to pick a VALUE falling in the range you are taking and see what happens to the value within the MOD..
1) if the solution of the MOD is a negative number, add a -ive sign..
2)if the solution of the MOD is a positive number, add a +ive sign..


let me show with some examples --
C) -3 <= x < 4 ----- (x+3) - (4-x) = (8+x) --> here x < 0 hence |x| = -x and x>0, hence |x| = x . why |4-x| is –(4-x) and |8+x| is (8+x)
take x as 0 as it falls in the given range -3 <= x < 4
see what happens to each MOD at this value
i) |x+3|.. 0+3=3 so + sign in front of MOD .. (x+3)
ii) |4-x|.. 4-0=4 so + sign in front of MOD


b) -8 <= x < -3. -(x+3) - (4-x) = (8+x) --> here x < 0 hence |x| = -x. why |4-x| is –(4-x) and |8+x| is (8+x)

take the value as -5..
|x+3|.. -5+3=-2 so a negative sign.. -(x+3)
|4-x|.. 4-(-5)=9.. so +sign.. (4-x)
|8+x|.. 8-5=3 so +sign... (8+x)


Hope it helps
 1   2   3   
Moderators:
Math Expert
105389 posts
Tuck School Moderator
805 posts