GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 11 Dec 2018, 01:10

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

## Events & Promotions

###### Events & Promotions in December
PrevNext
SuMoTuWeThFrSa
2526272829301
2345678
9101112131415
16171819202122
23242526272829
303112345
Open Detailed Calendar
• ### Free GMAT Prep Hour

December 11, 2018

December 11, 2018

09:00 PM EST

10:00 PM EST

Strategies and techniques for approaching featured GMAT topics. December 11 at 9 PM EST.
• ### The winning strategy for 700+ on the GMAT

December 13, 2018

December 13, 2018

08:00 AM PST

09:00 AM PST

What people who reach the high 700's do differently? We're going to share insights, tips and strategies from data we collected on over 50,000 students who used examPAL.

# Is y^2 + 7y + xy even?

Author Message
TAGS:

### Hide Tags

Current Student
Joined: 22 Jul 2014
Posts: 123
Concentration: General Management, Finance
GMAT 1: 670 Q48 V34
WE: Engineering (Energy and Utilities)
Is y^2 + 7y + xy even?  [#permalink]

### Show Tags

20 Aug 2014, 23:13
1
11
00:00

Difficulty:

95% (hard)

Question Stats:

16% (02:32) correct 84% (02:36) wrong based on 266 sessions

### HideShow timer Statistics

Is y^2 + 7y + xy even?

(1) (x + y)(x - y) is a multiple of 4
(2) (x + 2)(x - 2) is a multiple of 4

Source : 4gmat
Math Expert
Joined: 02 Sep 2009
Posts: 51096
Re: Is y^2 + 7y + xy even?  [#permalink]

### Show Tags

21 Aug 2014, 02:08
1
5
alphonsa wrote:
Is y^2 + 7y + xy even?

(1) (x + y)(x - y) is a multiple of 4
(2) (x + 2)(x - 2) is a multiple of 4

Source : 4gmat

Not a GMAT-like question. Every GMAT divisibility question will tell you in advance that any unknowns represent positive integers (ALL GMAT divisibility questions are limited to positive integers only).

Is y^2 + 7y + xy even?

Is y^2 + 7y + xy = y(y + 7 + x) even?

(1) (x + y)(x - y) is a multiple of 4 --> x^2 - y^2 is a multiple of 4. If x = y = 0, then the answer would be YES but if x = y = 1, then the answer would be NO. Not sufficient.

(2) (x + 2)(x - 2) is a multiple of 4 --> x^2 - 4 is a multiple of 4 --> x^2 is a multiple of 4. If x = y = 0, then the answer would be YES but if $$x =2\sqrt{2}$$ and y = 1, then the answer would be NO. Not sufficient.

(1)+(2) Since from (2) x^2 is a multiple of 4 and from (1) x^2 - y^2 is a multiple of 4, then y^2 must be a multiple of 4. Now, notice that we are not told that x and y are integers. So, if x = y = 0, then the answer would be YES but if $$x =2\sqrt{2}$$ and y = 2, then the answer would be NO. Not sufficient.

_________________
##### General Discussion
Intern
Joined: 31 May 2013
Posts: 11
Re: Is y^2 + 7y + xy even?  [#permalink]

### Show Tags

21 Aug 2014, 06:45
1
Hello bunnel

Other than using irrational numbers,
Can i take x and y as imaginary i.e 3i or 4i
as nothing is mentioned about them
Math Expert
Joined: 02 Sep 2009
Posts: 51096
Re: Is y^2 + 7y + xy even?  [#permalink]

### Show Tags

21 Aug 2014, 07:01
utkgogia2003 wrote:
Hello bunnel

Other than using irrational numbers,
Can i take x and y as imaginary i.e 3i or 4i
as nothing is mentioned about them

No, all numbers on the test are real numbers (GMAT only deals with real numbers). So, no you cannot use complex numbers for the GMAT problems.
_________________
Current Student
Joined: 16 Jun 2015
Posts: 34
Concentration: Strategy, Social Entrepreneurship
GMAT 1: 760 Q50 V42
WE: Information Technology (Other)
Re: Is y^2 + 7y + xy even?  [#permalink]

### Show Tags

14 Sep 2015, 06:25
Hey guys

I have a solution to this problem which results in answer choice C, but not sure where i am going wrong in my approach, i would really appreciate if you could help me on this:

Is y^2 + 7y + xy even?

Is y^2 + 7y + xy = y(y + 7 + x) even?

So for y(y + 7 + x) to be even, either both the terms('y' and 'x+y+7') need to be even or either one term even and one term odd.('y' odd and 'x+y+7' even or vice versa.)

(x-y)(x+y) is a multiple of 4. This tells us that this term "(x-y)(x+y)" is a even number. Hence two possibilities:

Both terms '(x-y)','(x+y)' are even or either one even and one odd.

So possibilities:

1. (x+y) => even (x-y) => even
2. (x+y) => even (x-y) => odd
3. (x+y) => odd (x-y) => even

Now we see, then for x+y to be even either both x and y have to be even or both have to be odd. But now looking closely we can also determine that options 2 and 3 listed above are not possible. (x+Y) and (x-Y) would either be both odd or both even. So we rule out those possibilities. And we are left with:

(x+y) => even (x-y) => even

So X, Y could either both be even or both be odd. and hence y(x+y+7) could be both even or odd. 1st statement is not sufficient.

Looking at statement b now:

(x+2)(x-2) is a multiple of 4. no information about Y and hence not sufficient.

But if we solve statement 2, it is also even(multiple of 4), following methodology we just saw above. We can establish that (x+2) and (X-2) are both even. IF x+2 is even then x is also even.

Now combining both the statements :

statement 2: X is even

statement 1: X,y are both odd or both are even.

So we get x and y as both even.

and hence the expression y(x+y+7) as even.
Math Expert
Joined: 02 Sep 2009
Posts: 51096
Re: Is y^2 + 7y + xy even?  [#permalink]

### Show Tags

14 Sep 2015, 07:02
ankuragarwal1301 wrote:
Hey guys

I have a solution to this problem which results in answer choice C, but not sure where i am going wrong in my approach, i would really appreciate if you could help me on this:

Is y^2 + 7y + xy even?

Is y^2 + 7y + xy = y(y + 7 + x) even?

So for y(y + 7 + x) to be even, either both the terms('y' and 'x+y+7') need to be even or either one term even and one term odd.('y' odd and 'x+y+7' even or vice versa.)

(x-y)(x+y) is a multiple of 4. This tells us that this term "(x-y)(x+y)" is a even number. Hence two possibilities:

Both terms '(x-y)','(x+y)' are even or either one even and one odd.

So possibilities:

1. (x+y) => even (x-y) => even
2. (x+y) => even (x-y) => odd
3. (x+y) => odd (x-y) => even

Now we see, then for x+y to be even either both x and y have to be even or both have to be odd. But now looking closely we can also determine that options 2 and 3 listed above are not possible. (x+Y) and (x-Y) would either be both odd or both even. So we rule out those possibilities. And we are left with:

(x+y) => even (x-y) => even

So X, Y could either both be even or both be odd. and hence y(x+y+7) could be both even or odd. 1st statement is not sufficient.

Looking at statement b now:

(x+2)(x-2) is a multiple of 4. no information about Y and hence not sufficient.

But if we solve statement 2, it is also even(multiple of 4), following methodology we just saw above. We can establish that (x+2) and (X-2) are both even. IF x+2 is even then x is also even.

Now combining both the statements :

statement 2: X is even

statement 1: X,y are both odd or both are even.

So we get x and y as both even.

and hence the expression y(x+y+7) as even.

Notice that we are not told that x and y are integers. Refer to the solution above.
_________________
Current Student
Joined: 16 Jun 2015
Posts: 34
Concentration: Strategy, Social Entrepreneurship
GMAT 1: 760 Q50 V42
WE: Information Technology (Other)
Re: Is y^2 + 7y + xy even?  [#permalink]

### Show Tags

14 Sep 2015, 07:20
Thanks Bunuel, silly mistake, apologies for wasting the time.
Math Revolution GMAT Instructor
Joined: 16 Aug 2015
Posts: 6619
GMAT 1: 760 Q51 V42
GPA: 3.82
Re: Is y^2 + 7y + xy even?  [#permalink]

### Show Tags

15 Sep 2015, 08:26
Forget conventional ways of solving math questions. In DS, Variable approach is the easiest and quickest way to find the answer without actually solving the problem.
Remember equal number of variables and independent equations ensures a solution.

Is y^2 + 7y + xy even?

(1) (x + y)(x - y) is a multiple of 4
(2) (x + 2)(x - 2) is a multiple of 4

Transforming the original condition and the question we have y(y+7+x)=even? and thus there are 2 variables (x,y). In order to match the number of variables and equations we need 2 equations and since there is 1 each in 1) and 2), there is high probability that C is the answer.

Using both 1) & 2) together we have (This saves us time)
x=even=4, y=2 yes, x=2sqrt2, y=2 no(since there is no guarantee that x,y are integers) therefore the conditions are not sufficient. The answer is E.

Normally for cases where we need 2 more equations, such as original conditions with 2 variable, or 3 variables and 1 equation, or 4 variables and 2 equations, we have 1 equation each in both 1) and 2). Therefore C has a high chance of being the answer, which is why we attempt to solve the question using 1) and 2) together. Here, there is 70% chance that C is the answer, while E has 25% chance. These two are the key questions. In case of common mistake type 3,4, the answer may be from A, B or D but there is only 5% chance. Since C is most likely to be the answer according to DS definition, we solve the question assuming C would be our answer hence using ) and 2) together. (It saves us time). Obviously there may be cases where the answer is A, B, D or E.
_________________

MathRevolution: Finish GMAT Quant Section with 10 minutes to spare
The one-and-only World’s First Variable Approach for DS and IVY Approach for PS with ease, speed and accuracy.
"Only \$99 for 3 month Online Course"
"Free Resources-30 day online access & Diagnostic Test"
"Unlimited Access to over 120 free video lessons - try it yourself"

Intern
Joined: 13 Jul 2015
Posts: 6
Re: Is y^2 + 7y + xy even?  [#permalink]

### Show Tags

12 Oct 2015, 09:30
Hi,
What if we were told that x,y were integers.
Current Student
Joined: 12 Aug 2015
Posts: 2630
Schools: Boston U '20 (M)
GRE 1: Q169 V154
Re: Is y^2 + 7y + xy even?  [#permalink]

### Show Tags

15 Mar 2016, 23:43
Hey chetan2u If in this question if the stem of the question says that x and y are both integers then B is sufficient right?
Also does GMAT really go to this extend to fool us on the even odd concept that x and y may both not be integers ?

Regards'
Stone Cold
_________________

MBA Financing:- INDIAN PUBLIC BANKS vs PRODIGY FINANCE!

Getting into HOLLYWOOD with an MBA!

The MOST AFFORDABLE MBA programs!

STONECOLD's BRUTAL Mock Tests for GMAT-Quant(700+)

AVERAGE GRE Scores At The Top Business Schools!

VP
Status: Learning
Joined: 20 Dec 2015
Posts: 1067
Location: India
Concentration: Operations, Marketing
GMAT 1: 670 Q48 V36
GRE 1: Q157 V157
GPA: 3.4
WE: Engineering (Manufacturing)
Is y^2 + 7y + xy even?  [#permalink]

### Show Tags

24 Jun 2017, 02:46
Beautiful question with lot of traps .
Initially i did not know how to approach this question , but found a way to do it.
So lets get on with it

Is y^2 + 7y + xy even?

(1) (x + y)(x - y) is a multiple of 4
(2) (x + 2)(x - 2) is a multiple of 4

From 1 we can not decide whether it is sufficient , suppose x=y=0 then it is even but if you take other value x=5 y =3 then is then it is odd.
From 2 X=0 it is even as we will have only y^2 + 7y left in that case so it will be even but if take x=1 then it is even for even values of y and odd for odd value for y.

taking together these two statements y =2 then our equation becomes y^2 + 7y + xy =4+14+2x now x can take the value of fraction hence

_________________

Non-Human User
Joined: 09 Sep 2013
Posts: 9103
Re: Is y^2 + 7y + xy even?  [#permalink]

### Show Tags

13 Jul 2018, 07:45
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Re: Is y^2 + 7y + xy even? &nbs [#permalink] 13 Jul 2018, 07:45
Display posts from previous: Sort by

# Is y^2 + 7y + xy even?

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.