Author 
Message 
TAGS:

Hide Tags

Manager
Status: Its Wow or Never
Joined: 11 Dec 2009
Posts: 166
Location: India
Concentration: Technology, Strategy
Schools: Kelley '14, Tepper '14, KenanFlagler '14, ISB, Goizueta '14, Tippie, Georgia Tech, Katz, Schulich, Mays, Smith '15
GMAT 1: 670 Q47 V35 GMAT 2: 710 Q48 V40
WE: Information Technology (Computer Software)

Of the 66 people in a certain auditorium, at most 6 people
[#permalink]
Show Tags
09 Jun 2010, 11:59
Question Stats:
59% (00:59) correct 41% (01:09) wrong based on 649 sessions
HideShow timer Statistics
Of the 66 people in a certain auditorium, at most 6 people have their birthdays in any one given month. Does at least one person in the auditorium have a birthday in January? (1) More of the people in the auditorium have their birthday in February than in March. (2) Five of the people in the auditorium have their birthday in March.
Official Answer and Stats are available only to registered users. Register/ Login.
_________________
 If you think you can,you can If you think you can't,you are right.




Math Expert
Joined: 02 Sep 2009
Posts: 50009

Re: OGDS
[#permalink]
Show Tags
09 Jun 2010, 13:33
mojorising800 wrote: Of the 66 people in a certain auditorium, at most 6 people have their birthdays in any one given month. Does at least one person in the auditorium have a birthday in January?
(1) More of the people in the auditorium have their birthday in February than in March. (2) Five of the people in the auditorium have their birthday in March. Basically the question is whether we can distribute 66 birthdays between 12 moths so that January to get 0. (1) Let 10 months (except March and January) have 6 birthdays each (maximum possible) > 6*10=60. As in March there was less birthdays than in February than maximum possible for March is 5 > total 60+5=65, so even for the worst case scenario (maximum for other months) still 1 birthday (6665=1) is left for January. Sufficient. (2) Again: let 10 months have 6 birthdays each (maximum possible) > 6*10=60 + 5 birthdays in March = 65. The same here: even for the worst case scenario (maximum for other months) still 1 birthday (6665=1) is left for January. Sufficient. Answer: D. Hope it helps.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics




VP
Status: Far, far away!
Joined: 02 Sep 2012
Posts: 1076
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8

Re: Of the 66 people in a certain auditorium, at most 6 people
[#permalink]
Show Tags
31 May 2013, 09:21
Bunuel wrote: Bumping for review and further discussion*. Get a kudos point for an alternative solution! *New project from GMAT Club!!! Check HERE Of the 66 people in a certain auditorium, at most 6 people have their birthdays in any one given month. Does at least one person in the auditorium have a birthday in January?Prethinking: in the worst case scenario there are 11 months each with 6 people => 1 month out with 0. We start from here because if we do NOT assume this, then all months have at least one person, and the question does not make sense. (1) More of the people in the auditorium have their birthday in February than in March.This could mean two things: 1) The month "out" is March (0 people), in this case January is one of the month with 6 people. 2) March and February cannot both have 6 people => in the worst case March has 5 people, and all months have at least one person now. Both cases are sufficient (2) Five of the people in the auditorium have their birthday in March. So we take the 6 people of March, take one out and assign it to to a new month (because all the others have 6 already). In this scenario all months have at least one person, sufficient Hope this makes sense
_________________
It is beyond a doubt that all our knowledge that begins with experience.
Kant , Critique of Pure Reason Tips and tricks: Inequalities , Mixture  Review: MGMAT workshop Strategy: SmartGMAT v1.0  Questions: Verbal challenge SC III CR New SC set out !! , My QuantRules for Posting in the Verbal Forum  Rules for Posting in the Quant Forum[/size][/color][/b]




Intern
Joined: 02 May 2010
Posts: 49
Schools: IU, UT Dallas, Univ of Georgia, Univ of Arkansas, Miami University
WE 1: 5.5 Yrs IT

Re: OGDS
[#permalink]
Show Tags
09 Jun 2010, 12:09
mojorising800 wrote: Of the 66 people in a certain auditorium, at most 6 people have their birthdays in any one given month. Does at least one person in the auditorium have a birthday in January? (1) More of the people in the auditorium have their birthday in February than in March. (2) Five of the people in the auditorium have their birthday in March. IMO D Given that no of people who have birthdays in month is at most 6. So for 66 people, one of the possibilities is to have 6 people place is every month leaving out one of the months with no birthdays. A  SUFFICIENT (more birthdays in Feb than in March means that there should at least 1 birthday in Jan even if Jan was left out initially. B  SUFFICIENT (Same reason as A)



Math Expert
Joined: 02 Sep 2009
Posts: 50009

Re: Of the 66 people in a certain auditorium, at most 6 people
[#permalink]
Show Tags
31 May 2013, 05:43



Intern
Joined: 25 Oct 2013
Posts: 7

Re: Of the 66 people in a certain auditorium, at most 6 people
[#permalink]
Show Tags
06 Jan 2014, 11:42
Apologies for flaring up an old topic. Given both the question and the solution come from OG, there is certainly no conflict over the answer and its explanation. However, I find the answer incorrect. My reasoning for the same is as follows. 1) Agreed, this is sufficient 2) The statement reads as "Five of the people in the auditorium have birthdays in March". The statement to me reads as 5 people from the auditorium have birthdays in March, however it does not say these are the only 5 people whose birthday falls in March. Logically "only" is a required qualifier for the reader to conclude that there are only 5 such people. I don't think statement 2 will be incorrect if there are 6 people who have their birthdays in March. Therefore, the correct answer of this question should be (A). I understand at the end of the day whatever OG mentions will be construed as correct answer, but I feel my logic is correct. I solicit your views on this.



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 8399
Location: Pune, India

Re: Of the 66 people in a certain auditorium, at most 6 people
[#permalink]
Show Tags
07 Jan 2014, 00:02
ankurdubey wrote: Apologies for flaring up an old topic. Given both the question and the solution come from OG, there is certainly no conflict over the answer and its explanation. However, I find the answer incorrect. My reasoning for the same is as follows. 1) Agreed, this is sufficient 2) The statement reads as "Five of the people in the auditorium have birthdays in March". The statement to me reads as 5 people from the auditorium have birthdays in March, however it does not say these are the only 5 people whose birthday falls in March. Logically "only" is a required qualifier for the reader to conclude that there are only 5 such people. I don't think statement 2 will be incorrect if there are 6 people who have their birthdays in March. Therefore, the correct answer of this question should be (A). I understand at the end of the day whatever OG mentions will be construed as correct answer, but I feel my logic is correct. I solicit your views on this. Think about the sets questions you solve regularly. 55 of the 100 people drink tea. Do you take it as 55 drink tea and 45 do not or do you take it as 'at least 55 drink tea'? When you are given that of the 100 people, 55 drink tea, it means only 55 drink tea. Similarly, 5 of the people in the auditorium have their birthday in March means only 5 do.
_________________
Karishma Veritas Prep GMAT Instructor
Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >
GMAT selfstudy has never been more personalized or more fun. Try ORION Free!



Intern
Joined: 25 Oct 2013
Posts: 7

Re: Of the 66 people in a certain auditorium, at most 6 people
[#permalink]
Show Tags
15 Jan 2014, 03:15
VeritasPrepKarishma wrote: ankurdubey wrote: Apologies for flaring up an old topic. Given both the question and the solution come from OG, there is certainly no conflict over the answer and its explanation. However, I find the answer incorrect. My reasoning for the same is as follows. 1) Agreed, this is sufficient 2) The statement reads as "Five of the people in the auditorium have birthdays in March". The statement to me reads as 5 people from the auditorium have birthdays in March, however it does not say these are the only 5 people whose birthday falls in March. Logically "only" is a required qualifier for the reader to conclude that there are only 5 such people. I don't think statement 2 will be incorrect if there are 6 people who have their birthdays in March. Therefore, the correct answer of this question should be (A). I understand at the end of the day whatever OG mentions will be construed as correct answer, but I feel my logic is correct. I solicit your views on this. Think about the sets questions you solve regularly. 55 of the 100 people drink tea. Do you take it as 55 drink tea and 45 do not or do you take it as 'at least 55 drink tea'? When you are given that of the 100 people, 55 drink tea, it means only 55 drink tea. Similarly, 5 of the people in the auditorium have their birthday in March means only 5 do. Thanks VeritasPrepKarishma. While I agree with you, I was stumped by this question from one of the reputed practise tests. Team A and team B competed in 8 distinct consecutive events. The team winning the nth event was given n points, there were no other teams competing, and there were no ties in any event. Did team A receive more points than team B? (1) Team A won the seventh and eighth events and at least one other event. (2) Team B won the third, fourth, and fifth events. Based on what you noted, I came up with the answer (B) i.e. Statement 2 is sufficient, but the solution given by the prep company is as follows "Now consider Statement (2). Team B won the third, fourth, and fifth events. For these events team B received 3 + 4 + 5, or 12 points. However, we have no information about which team won the remaining events. If team A won all the other events, then team A received 36 − 12, or 24 points. In this case the answer to the question is YES. However, if team B won all 8 events, then team A received no points while team B received all 36 points, and in this case the answer to the question is NO. Statement (2) is Insufficient, and we can eliminate choice (B)" As you see, this is exactly what I was contending earlier. Is there any concrete method to tackle such ambiguous questions.



Intern
Joined: 02 Jul 2016
Posts: 1

Re: Of the 66 people in a certain auditorium, at most 6 people
[#permalink]
Show Tags
02 Jul 2016, 04:42
VeritasPrepKarishma wrote: Given both the question and the solution come from OG, there is certainly no conflict over the answer and its explanation. However, I find the answer incorrect. My reasoning for the same is as follows. 1) Agreed, this is sufficient 2) The statement reads as "Five of the people in the auditorium have birthdays in March". The statement to me reads as 5 people from the auditorium have birthdays in March, however it does not say these are the only 5 people whose birthday falls in March. Logically "only" is a required qualifier for the reader to conclude that there are only 5 such people. I don't think statement 2 will be incorrect if there are 6 people who have their birthdays in March. Therefore, the correct answer of this question should be (A). I understand at the end of the day whatever OG mentions will be construed as correct answer, but I feel my logic is correct. I solicit your views on this. Think about the sets questions you solve regularly. 55 of the 100 people drink tea. Do you take it as 55 drink tea and 45 do not or do you take it as 'at least 55 drink tea'? When you are given that of the 100 people, 55 drink tea, it means only 55 drink tea. Similarly, 5 of the people in the auditorium have their birthday in March means only 5 do.[/quote] I do agree with VeritasPrepKarishma
Also considering the example put forward by Ankurdubey :ankurdubey wrote:
Team A and team B competed in 8 distinct consecutive events. The team winning the nth event was given n points, there were no other teams competing, and there were no ties in any event. Did team A receive more points than team B?
(1) Team A won the seventh and eighth events and at least one other event.
(2) Team B won the third, fourth, and fifth events.
Based on what you noted, I came up with the answer (B) i.e. Statement 2 is sufficient, but the solution given by the prep company is as follows
"Now consider Statement (2). Team B won the third, fourth, and fifth events. For these events team B received 3 + 4 + 5, or 12 points. However, we have no information about which team won the remaining events. If team A won all the other events, then team A received 36 − 12, or 24 points. In this case the answer to the question is YES. However, if team B won all 8 events, then team A received no points while team B received all 36 points, and in this case the answer to the question is NO. Statement (2) is Insufficient, and we can eliminate choice (B)"
As you see, this is exactly what I was contending earlier. Is there any concrete method to tackle such ambiguous questions.
[/quote][/quote] I am confused with what approach to follow, can any of the experts here suggest how to tackle such questions and come up with a concrete understanding of the question along with the right answer?



NonHuman User
Joined: 09 Sep 2013
Posts: 8508

Re: Of the 66 people in a certain auditorium, at most 6 people
[#permalink]
Show Tags
26 Sep 2018, 07:22
Hello from the GMAT Club BumpBot! Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up  doing my job. I think you may find it valuable (esp those replies with Kudos). Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Books  GMAT Club Tests  Best Prices on GMAT Courses  GMAT Mobile App  Math Resources  Verbal Resources




Re: Of the 66 people in a certain auditorium, at most 6 people &nbs
[#permalink]
26 Sep 2018, 07:22






