It is currently 16 Dec 2017, 18:37

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Consider a regular polygon of p sides. The number of values

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

13 KUDOS received
Manager
Manager
avatar
Status: GMAT in 4 weeks
Joined: 28 Mar 2010
Posts: 177

Kudos [?]: 195 [13], given: 25

GPA: 3.89
Consider a regular polygon of p sides. The number of values [#permalink]

Show Tags

New post 21 May 2011, 02:33
13
This post received
KUDOS
40
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

31% (01:53) correct 69% (02:04) wrong based on 540 sessions

HideShow timer Statistics

Consider a regular polygon of p sides. The number of values of p for which the polygon will have angles whose values in degrees can be expressed in integers?

A. 24
B. 23
C. 22
D. 20
E. 21
[Reveal] Spoiler: OA

_________________

If you liked my post, please consider a Kudos for me. Thanks!

Kudos [?]: 195 [13], given: 25

3 KUDOS received
Manager
Manager
User avatar
Joined: 29 Jun 2010
Posts: 246

Kudos [?]: 50 [3], given: 12

Schools: LBS, Oxford
Re: Polygon + Number properties [#permalink]

Show Tags

New post 21 May 2011, 03:33
3
This post received
KUDOS
2
This post was
BOOKMARKED
hussi9 wrote:
Consider a regular polygon of p sides .The number of values of p for which the polygon will have angles whose values in degrees can be expressed in integers?

(a) 24 (b) 23 (c ) 22 (d) 20 (e)21


formula

(n-2)*180/n

so for angle to be an integer, 360/n should be an integer

that reduces questions to " how many factors are there for 360"

answer 24 ( three 2s, two 3s, one 5)

correct answer is 23 as no polygon is possible with two sides

Kudos [?]: 50 [3], given: 12

3 KUDOS received
Current Student
avatar
Joined: 26 May 2005
Posts: 551

Kudos [?]: 248 [3], given: 13

Re: Polygon + Number properties [#permalink]

Show Tags

New post 21 May 2011, 04:09
3
This post received
KUDOS
Alchemist1320 wrote:
hussi9 wrote:
Consider a regular polygon of p sides .The number of values of p for which the polygon will have angles whose values in degrees can be expressed in integers?

(a) 24 (b) 23 (c ) 22 (d) 20 (e)21


formula

(n-2)*180/n

so for angle to be an integer, 360/n should be an integer

that reduces questions to " how many factors are there for 360"

answer 24 ( three 2s, two 3s, one 5)

correct answer is 23 as no polygon is possible with two sides


I think the answer should be 22 and not 23.
same method as above . but p>=3
hence 24-2 = 22.
Not sure if it was a typo by Alchemist.

Kudos [?]: 248 [3], given: 13

1 KUDOS received
Manager
Manager
avatar
Status: GMAT in 4 weeks
Joined: 28 Mar 2010
Posts: 177

Kudos [?]: 195 [1], given: 25

GPA: 3.89
Re: Polygon + Number properties [#permalink]

Show Tags

New post 21 May 2011, 05:01
1
This post received
KUDOS
1
This post was
BOOKMARKED
sudhir18n wrote:

I think the answer should be 22 and not 23.
same method as above . but p>=3
hence 24-2 = 22.
Not sure if it was a typo by Alchemist.


Opps I also over looked that...
Its 22 and not 23
There cannot be polygon of 1 and 2 sides.
24 - 2 = 22
_________________

If you liked my post, please consider a Kudos for me. Thanks!

Kudos [?]: 195 [1], given: 25

Intern
Intern
avatar
Joined: 14 Mar 2010
Posts: 16

Kudos [?]: 9 [0], given: 1

Re: Polygon + Number properties [#permalink]

Show Tags

New post 30 May 2011, 05:43
I m sorry , but I didnt get the meaning of the below statement

"correct answer is 23 as no polygon is possible with two sides"

Could you please explain

thnks ,
Binu

Kudos [?]: 9 [0], given: 1

1 KUDOS received
Manager
Manager
avatar
Status: GMAT in 4 weeks
Joined: 28 Mar 2010
Posts: 177

Kudos [?]: 195 [1], given: 25

GPA: 3.89
Re: Polygon + Number properties [#permalink]

Show Tags

New post 30 May 2011, 10:09
1
This post received
KUDOS
1
This post was
BOOKMARKED
there are 24 possible polygons with given condition.
This polygons count consider for polygons with sides 1 and 2.

But polygons can have 3 or more sides .

hence 24 - 2 = 22
_________________

If you liked my post, please consider a Kudos for me. Thanks!

Kudos [?]: 195 [1], given: 25

1 KUDOS received
Manager
Manager
avatar
Joined: 10 Jan 2010
Posts: 119

Kudos [?]: 151 [1], given: 33

GPA: 4
WE: Programming (Computer Software)
Re: Polygon + Number properties [#permalink]

Show Tags

New post 22 Jun 2011, 19:16
1
This post received
KUDOS
Can somebody please explain the question and the answer. I am not clear with the question.
_________________

-If you like my post, consider giving KUDOS

Kudos [?]: 151 [1], given: 33

Intern
Intern
avatar
Joined: 25 Aug 2011
Posts: 22

Kudos [?]: 3 [0], given: 56

Concentration: Entrepreneurship, General Management
GMAT Date: 01-31-2012
GMAT ToolKit User
Re: Polygon + Number properties [#permalink]

Show Tags

New post 19 Dec 2011, 07:27
[quote="msbinu"]I m sorry , but I didnt get the meaning of the below statement

"correct answer is 23 as no polygon is possible with two sides"

Could you please explain

thnks ,

Hi 1.- also do not understand the meaning of this.....? 2-By the way, 360 is also divisible by 20, then why you picked 24 and not 20?

Can somebody explain?

thanks!!!

Kudos [?]: 3 [0], given: 56

Senior Manager
Senior Manager
avatar
Joined: 13 May 2011
Posts: 292

Kudos [?]: 294 [0], given: 11

WE 1: IT 1 Yr
WE 2: Supply Chain 5 Yrs
Re: Polygon + Number properties [#permalink]

Show Tags

New post 19 Dec 2011, 10:35
for a regular polygon of p sides .The number of values of p= 20 or 24, the polygon will have angles whose values in degrees can be expressed in integers. using the formula 180*(p-2)/p. i. e. only 20 and 24 yield integer value for 180*(p-2)/p.
Can someone please check the answers.

Kudos [?]: 294 [0], given: 11

Expert Post
32 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42631

Kudos [?]: 135874 [32], given: 12715

Re: Polygon + Number properties [#permalink]

Show Tags

New post 17 Jan 2012, 05:31
32
This post received
KUDOS
Expert's post
13
This post was
BOOKMARKED
maheshsrini wrote:
Can somebody please explain the question and the answer. I am not clear with the question.
BDSunDevil wrote:
for a regular polygon of p sides .The number of values of p= 20 or 24, the polygon will have angles whose values in degrees can be expressed in integers. using the formula 180*(p-2)/p. i. e. only 20 and 24 yield integer value for 180*(p-2)/p.
Can someone please check the answers.


Couple of things:
1. Sum of interior angles of a polygon is given by \(180(n-2)\) where \(n\) is the number of sides (for example the sum of interior angles of a triangle is \(180(3-2)=180\) degrees and the sum of interior angles of a quadrilateral is \(180(4-2)=360\) degrees).

Question below talks about a regular polygon, which is a polygon with all equal sides and equal interior angles. Thus each interior angle of a regular polygon is given by: \(\frac{180(n-2)}{n}\) (for example each interior angle of an equilateral triangle is \(\frac{180(3-2)}{3}=60\) degrees and each interior angles of a square is \(\frac{180(4-2)}{4}=90\) degrees).
For more on polygons check: math-polygons-87336.html

2. Finding the Number of Factors of an Integer

First make prime factorization of an integer \(n=a^p*b^q*c^r\), where \(a\), \(b\), and \(c\) are prime factors of \(n\) and \(p\), \(q\), and \(r\) are their powers.

The number of factors of \(n\) will be expressed by the formula \((p+1)(q+1)(r+1)\). NOTE: this will include 1 and n itself.

Example: Finding the number of all factors of 450: \(450=2^1*3^2*5^2\)

Total number of factors of 450 including 1 and 450 itself is \((1+1)*(2+1)*(2+1)=2*3*3=18\) factors.
For more on number properties check: math-number-theory-88376.html

BACK TO THE ORIGINAL QUESTION:
Consider a regular polygon of p sides .The number of values of p for which the polygon will have angles whose values in degrees can be expressed in integers?
A. 24
B. 23
C. 22
D. 20
E. 21

The question is: for how many values of \(p\) (where p is the # of sides of a regular polygon) \(\frac{180(p-2)}{p}\) is an integer (or how many sided regular polygons exist which have interior angles equal to an integer).

Now, \(\frac{180(p-2)}{p}=180-\frac{360}{p}\) to be an integer \(\frac{360}{p}\) must be an integer, so \(p\) must be a factor of 360. How many different positive factors does 360 have? Since \(360=2^3*3^2*5\) then # of factors is \((3+1)(2+1)(1+1)=24\), including 1 and 360. Thus if \(p\) is any of these 24 values (1, 2, 3, ... 360) then \(\frac{180(p-2)}{p}\) is an integer.

Finally, as polygon can not have 1 or 2 sides (p can not be 1 or 2) then only 24-2=22 regular polygons exist which have interior angles equal to an integer: 3 sided (equilateral triangle), 4 sided (square), 5 sided (regular pentagon), ..., 360 sided (trictohexacontagon :-D ).

Answer: C.

Hope it's clear.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 135874 [32], given: 12715

Senior Manager
Senior Manager
avatar
Joined: 10 Jul 2013
Posts: 325

Kudos [?]: 430 [0], given: 102

Re: Polygon + Number properties [#permalink]

Show Tags

New post 14 Aug 2013, 11:57
Bunuel wrote:
maheshsrini wrote:
Can somebody please explain the question and the answer. I am not clear with the question.
BDSunDevil wrote:
for a regular polygon of p sides .The number of values of p= 20 or 24, the polygon will have angles whose values in degrees can be expressed in integers. using the formula 180*(p-2)/p. i. e. only 20 and 24 yield integer value for 180*(p-2)/p.
Can someone please check the answers.


Couple of things:
1. Sum of interior angles of a polygon is given by \(180(n-2)\) where \(n\) is the number of sides (for example the sum of interior angles of a triangle is \(180(3-2)=180\) degrees and the sum of interior angles of a quadrilateral is \(180(4-2)=360\) degrees).

Question below talks about a regular polygon, which is a polygon with all equal sides and equal interior angles. Thus each interior angle of a regular polygon is given by: \(\frac{180(n-2)}{n}\) (for example each interior angle of an equilateral triangle is \(\frac{180(3-2)}{3}=60\) degrees and each interior angles of a square is \(\frac{180(4-2)}{4}=90\) degrees).
For more on polygons check: math-polygons-87336.html

2. Finding the Number of Factors of an Integer

First make prime factorization of an integer \(n=a^p*b^q*c^r\), where \(a\), \(b\), and \(c\) are prime factors of \(n\) and \(p\), \(q\), and \(r\) are their powers.

The number of factors of \(n\) will be expressed by the formula \((p+1)(q+1)(r+1)\). NOTE: this will include 1 and n itself.

Example: Finding the number of all factors of 450: \(450=2^1*3^2*5^2\)

Total number of factors of 450 including 1 and 450 itself is \((1+1)*(2+1)*(2+1)=2*3*3=18\) factors.
For more on number properties check: math-number-theory-88376.html

BACK TO THE ORIGINAL QUESTION:
Consider a regular polygon of p sides .The number of values of p for which the polygon will have angles whose values in degrees can be expressed in integers?
A. 24
B. 23
C. 22
D. 20
E. 21

The question is: for how many values of \(p\) (where p is the # of sides of a regular polygon) \(\frac{180(p-2)}{p}\) is an integer (or how many sided regular polygons exist which have interior angles equal to an integer).

Now, \(\frac{180(p-2)}{p}=180-\frac{360}{p}\) to be an integer \(\frac{360}{p}\) must be an integer, so \(p\) must be a factor of 360. How many different positive factors does 360 have? Since \(360=2^3*3^2*5\) then # of factors is \((3+1)(2+1)(1+1)=24\), including 1 and 360. Thus if \(p\) is any of these 24 values (1, 2, 3, ... 360) then \(\frac{180(p-2)}{p}\) is an integer.

Finally, as polygon can not have 1 or 2 sides (p can not be 1 or 2) then only 24-2=22 regular polygons exist which have interior angles equal to an integer: 3 sided (equilateral triangle), 4 sided (square), 5 sided (regular pentagon), ..., 360 sided.

Answer: C.

Hope it's clear.


i wasn't sure about the 1 as one of the factors of 360 that's why answer was 23....
Now realize all the factorization includes 1 .

really great thing i learned today..........
_________________

Asif vai.....

Kudos [?]: 430 [0], given: 102

Intern
Intern
avatar
Joined: 22 Nov 2013
Posts: 14

Kudos [?]: 3 [0], given: 534

Consider a regular polygon of p sides. The number of values [#permalink]

Show Tags

New post 15 Dec 2014, 08:14
I have a smaller solution...

We don't need any geometry formula for this question.. :wink: 8-) .

Now since we need integral interior angles ...so exterior angles must be integral too...!!(say interior angle = 60 degress than ext = 120..)
So, If we find how many integral exterior angles are possible, we will also get all possible values of integral interior angles.

Now, Sum of all exterior angle = 360 degress..; so possible values of which divides 360 = (factors of 360)-2 = 24 -2 = 22 !!


(-2 because factors include 1 & 2 also and polygons cannot have n = 2)

Kudos Please !!

Kudos [?]: 3 [0], given: 534

Intern
Intern
avatar
Joined: 11 May 2014
Posts: 18

Kudos [?]: 13 [0], given: 39

Re: Consider a regular polygon of p sides. The number of values [#permalink]

Show Tags

New post 05 Oct 2015, 11:28
Bunuel wrote:
maheshsrini wrote:
Can somebody please explain the question and the answer. I am not clear with the question.
BDSunDevil wrote:
for a regular polygon of p sides .The number of values of p= 20 or 24, the polygon will have angles whose values in degrees can be expressed in integers. using the formula 180*(p-2)/p. i. e. only 20 and 24 yield integer value for 180*(p-2)/p.
Can someone please check the answers.


Couple of things:
1. Sum of interior angles of a polygon is given by \(180(n-2)\) where \(n\) is the number of sides (for example the sum of interior angles of a triangle is \(180(3-2)=180\) degrees and the sum of interior angles of a quadrilateral is \(180(4-2)=360\) degrees).

Question below talks about a regular polygon, which is a polygon with all equal sides and equal interior angles. Thus each interior angle of a regular polygon is given by: \(\frac{180(n-2)}{n}\) (for example each interior angle of an equilateral triangle is \(\frac{180(3-2)}{3}=60\) degrees and each interior angles of a square is \(\frac{180(4-2)}{4}=90\) degrees).
For more on polygons check: math-polygons-87336.html

2. Finding the Number of Factors of an Integer

First make prime factorization of an integer \(n=a^p*b^q*c^r\), where \(a\), \(b\), and \(c\) are prime factors of \(n\) and \(p\), \(q\), and \(r\) are their powers.

The number of factors of \(n\) will be expressed by the formula \((p+1)(q+1)(r+1)\). NOTE: this will include 1 and n itself.

Example: Finding the number of all factors of 450: \(450=2^1*3^2*5^2\)

Total number of factors of 450 including 1 and 450 itself is \((1+1)*(2+1)*(2+1)=2*3*3=18\) factors.
For more on number properties check: math-number-theory-88376.html

BACK TO THE ORIGINAL QUESTION:
Consider a regular polygon of p sides .The number of values of p for which the polygon will have angles whose values in degrees can be expressed in integers?
A. 24
B. 23
C. 22
D. 20
E. 21

The question is: for how many values of \(p\) (where p is the # of sides of a regular polygon) \(\frac{180(p-2)}{p}\) is an integer (or how many sided regular polygons exist which have interior angles equal to an integer).

Now, \(\frac{180(p-2)}{p}=180-\frac{360}{p}\) to be an integer \(\frac{360}{p}\) must be an integer, so \(p\) must be a factor of 360. How many different positive factors does 360 have? Since \(360=2^3*3^2*5\) then # of factors is \((3+1)(2+1)(1+1)=24\), including 1 and 360. Thus if \(p\) is any of these 24 values (1, 2, 3, ... 360) then \(\frac{180(p-2)}{p}\) is an integer.

Finally, as polygon can not have 1 or 2 sides (p can not be 1 or 2) then only 24-2=22 regular polygons exist which have interior angles equal to an integer: 3 sided (equilateral triangle), 4 sided (square), 5 sided (regular pentagon), ..., 360 sided (trictohexacontagon :-D ).

Answer: C.

Hope it's clear.


Hi Bunuel,

Please enlighten me for that I think there are three 2s in the number of factors of 360. So I would think that 24-1-3=20. Can you clarify me on this?

Kudos [?]: 13 [0], given: 39

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42631

Kudos [?]: 135874 [1], given: 12715

Re: Consider a regular polygon of p sides. The number of values [#permalink]

Show Tags

New post 06 Oct 2015, 03:48
1
This post received
KUDOS
Expert's post
Bambaruush wrote:
Bunuel wrote:
maheshsrini wrote:
Can somebody please explain the question and the answer. I am not clear with the question.
BDSunDevil wrote:
for a regular polygon of p sides .The number of values of p= 20 or 24, the polygon will have angles whose values in degrees can be expressed in integers. using the formula 180*(p-2)/p. i. e. only 20 and 24 yield integer value for 180*(p-2)/p.
Can someone please check the answers.


Couple of things:
1. Sum of interior angles of a polygon is given by \(180(n-2)\) where \(n\) is the number of sides (for example the sum of interior angles of a triangle is \(180(3-2)=180\) degrees and the sum of interior angles of a quadrilateral is \(180(4-2)=360\) degrees).

Question below talks about a regular polygon, which is a polygon with all equal sides and equal interior angles. Thus each interior angle of a regular polygon is given by: \(\frac{180(n-2)}{n}\) (for example each interior angle of an equilateral triangle is \(\frac{180(3-2)}{3}=60\) degrees and each interior angles of a square is \(\frac{180(4-2)}{4}=90\) degrees).
For more on polygons check: math-polygons-87336.html

2. Finding the Number of Factors of an Integer

First make prime factorization of an integer \(n=a^p*b^q*c^r\), where \(a\), \(b\), and \(c\) are prime factors of \(n\) and \(p\), \(q\), and \(r\) are their powers.

The number of factors of \(n\) will be expressed by the formula \((p+1)(q+1)(r+1)\). NOTE: this will include 1 and n itself.

Example: Finding the number of all factors of 450: \(450=2^1*3^2*5^2\)

Total number of factors of 450 including 1 and 450 itself is \((1+1)*(2+1)*(2+1)=2*3*3=18\) factors.
For more on number properties check: math-number-theory-88376.html

BACK TO THE ORIGINAL QUESTION:
Consider a regular polygon of p sides .The number of values of p for which the polygon will have angles whose values in degrees can be expressed in integers?
A. 24
B. 23
C. 22
D. 20
E. 21

The question is: for how many values of \(p\) (where p is the # of sides of a regular polygon) \(\frac{180(p-2)}{p}\) is an integer (or how many sided regular polygons exist which have interior angles equal to an integer).

Now, \(\frac{180(p-2)}{p}=180-\frac{360}{p}\) to be an integer \(\frac{360}{p}\) must be an integer, so \(p\) must be a factor of 360. How many different positive factors does 360 have? Since \(360=2^3*3^2*5\) then # of factors is \((3+1)(2+1)(1+1)=24\), including 1 and 360. Thus if \(p\) is any of these 24 values (1, 2, 3, ... 360) then \(\frac{180(p-2)}{p}\) is an integer.

Finally, as polygon can not have 1 or 2 sides (p can not be 1 or 2) then only 24-2=22 regular polygons exist which have interior angles equal to an integer: 3 sided (equilateral triangle), 4 sided (square), 5 sided (regular pentagon), ..., 360 sided (trictohexacontagon :-D ).

Answer: C.

Hope it's clear.


Hi Bunuel,

Please enlighten me for that I think there are three 2s in the number of factors of 360. So I would think that 24-1-3=20. Can you clarify me on this?


It does not matter how many 2'a re in 360.

360 has 24 factors. So, for 24 values of p (1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360), \(\frac{180(p-2)}{p}\) is an integer. But since p cannot be 1 or 2, then only 24-2=22 regular polygons exist which have interior angles equal to an integer.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 135874 [1], given: 12715

Expert Post
SVP
SVP
User avatar
G
Joined: 08 Jul 2010
Posts: 1857

Kudos [?]: 2409 [0], given: 51

Location: India
GMAT: INSIGHT
WE: Education (Education)
Reviews Badge
Re: Consider a regular polygon of p sides. The number of values [#permalink]

Show Tags

New post 01 Aug 2016, 09:33
hussi9 wrote:
Consider a regular polygon of p sides .The number of values of p for which the polygon will have angles whose values in degrees can be expressed in integers?

(a) 24 (b) 23 (c ) 22 (d) 20 (e)21


[/quote]

Please find the solution
Attachments

File comment: www.GMATinsight.com
Answer 2.jpg
Answer 2.jpg [ 112.89 KiB | Viewed 4352 times ]


_________________

Prosper!!!
GMATinsight
Bhoopendra Singh and Dr.Sushma Jha
e-mail: info@GMATinsight.com I Call us : +91-9999687183 / 9891333772
Online One-on-One Skype based classes and Classroom Coaching in South and West Delhi
http://www.GMATinsight.com/testimonials.html

22 ONLINE FREE (FULL LENGTH) GMAT CAT (PRACTICE TESTS) LINK COLLECTION

Kudos [?]: 2409 [0], given: 51

Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 14813

Kudos [?]: 288 [0], given: 0

Premium Member
Re: Consider a regular polygon of p sides. The number of values [#permalink]

Show Tags

New post 11 Oct 2017, 19:31
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Kudos [?]: 288 [0], given: 0

Re: Consider a regular polygon of p sides. The number of values   [#permalink] 11 Oct 2017, 19:31
Display posts from previous: Sort by

Consider a regular polygon of p sides. The number of values

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.