November 22, 2018 November 22, 2018 10:00 PM PST 11:00 PM PST Mark your calendars  All GMAT Club Tests are free and open November 22nd to celebrate Thanksgiving Day! Access will be available from 0:01 AM to 11:59 PM, Pacific Time (USA) November 23, 2018 November 23, 2018 10:00 PM PST 11:00 PM PST Practice the one most important Quant section  Integer properties, and rapidly improve your skills.
Author 
Message 
TAGS:

Hide Tags

Manager
Joined: 27 Aug 2014
Posts: 140
Concentration: Finance, Strategy
GPA: 3.9
WE: Analyst (Energy and Utilities)

If a number N is decreased by p percent and then the resulting value
[#permalink]
Show Tags
01 Oct 2015, 05:32
Question Stats:
31% (02:31) correct 69% (02:54) wrong based on 318 sessions
HideShow timer Statistics
If a number N is decreased by p percent and then the resulting value is increased by q percent, the final result is equal to N. If both p and q are positive integers, what is the value of p ? (1) p is not a multiple of 10. (2) q is not a multiple of 10.
Official Answer and Stats are available only to registered users. Register/ Login.



Manager
Joined: 06 Mar 2014
Posts: 96

Re: If a number N is decreased by p percent and then the resulting value
[#permalink]
Show Tags
16 Nov 2015, 03:40
Harley1980: Can you provide some insight on this one.



CEO
Status: GMATINSIGHT Tutor
Joined: 08 Jul 2010
Posts: 2702
Location: India
GMAT: INSIGHT
WE: Education (Education)

Re: If a number N is decreased by p percent and then the resulting value
[#permalink]
Show Tags
16 Nov 2015, 10:06
santorasantu wrote: If a number N is decreased by p percent and then the resulting value is increased by q percent, the final result is equal to N. If both p and q are positive integers, what is the value of p ? (1) p is not a multiple of 10. (2) q is not a multiple of 10. N decreased by p Percent i.e. N becomes> N*[1(p/100)] Resulting value increased by q Percent i.e. N*[1(p/100)] becomes> N*[1(p/100)]*[1+(q/100)] Now, N*[1(p/100)]*[1+(q/100)] = N i.e. (100p)*(100+q) = 100*100 = \(2^4*5^4\) Statement 1: p is not a multiple of 10.Case 1: p = 75 and q = 300 Case 2: p = 95 and q = 1900 NOT SUFFICIENT Statement 2: q is not a multiple of 10.Case 1: q = 25 and p = 20 Case 2: q = 525 and p = 84 NOT SUFFICIENT Combining the two statementsOnly possible values are q = 525 and p = 84 SUFFICIENT
_________________
Prosper!!! GMATinsight Bhoopendra Singh and Dr.Sushma Jha email: info@GMATinsight.com I Call us : +919999687183 / 9891333772 Online OneonOne Skype based classes and Classroom Coaching in South and West Delhi http://www.GMATinsight.com/testimonials.html
ACCESS FREE GMAT TESTS HERE:22 ONLINE FREE (FULL LENGTH) GMAT CAT (PRACTICE TESTS) LINK COLLECTION



SVP
Joined: 26 Mar 2013
Posts: 1887

Re: If a number N is decreased by p percent and then the resulting value
[#permalink]
Show Tags
17 Nov 2015, 00:51
Hi GMATinsight,
When combined 1 & 2, I found difficult to get the answer and in the real test it will be waste of time. Do you have any short cut to know there is only one unique answer such that the answer will be C?
Thanks



CEO
Status: GMATINSIGHT Tutor
Joined: 08 Jul 2010
Posts: 2702
Location: India
GMAT: INSIGHT
WE: Education (Education)

Re: If a number N is decreased by p percent and then the resulting value
[#permalink]
Show Tags
17 Nov 2015, 08:36
Mo2men wrote: Hi GMATinsight,
When combined 1 & 2, I found difficult to get the answer and in the real test it will be waste of time. Do you have any short cut to know there is only one unique answer such that the answer will be C?
Thanks i.e. (100p)*(100+q) = 100*100 = \(2^4∗5^4\) Combining the two statements Since and p and q are both NONMULTIPLE of 10 so (100p) and (100+q) also will be NONMULTIPLE of 10 i.e. the values of (100p) and (100+q) will include either powers of only 2 (i.e. 2 or 2^2 or 2^3 or 2^4) or powers of only 5 (i.e. 5 or 5^2 or 5^3 or 5^4) Also, Note that p can NOT be greater than 100 because (100p) must be POSITIVE Only possible values of p are q = 525 and p = 84 (100p)*(100+q) = 16*625 = 100*100 SUFFICIENT I Hope this helps!!!
_________________
Prosper!!! GMATinsight Bhoopendra Singh and Dr.Sushma Jha email: info@GMATinsight.com I Call us : +919999687183 / 9891333772 Online OneonOne Skype based classes and Classroom Coaching in South and West Delhi http://www.GMATinsight.com/testimonials.html
ACCESS FREE GMAT TESTS HERE:22 ONLINE FREE (FULL LENGTH) GMAT CAT (PRACTICE TESTS) LINK COLLECTION



Math Revolution GMAT Instructor
Joined: 16 Aug 2015
Posts: 6529
GPA: 3.82

Re: If a number N is decreased by p percent and then the resulting value
[#permalink]
Show Tags
17 Nov 2015, 09:38
Forget conventional ways of solving math questions. In DS, Variable approach is the easiest and quickest way to find the answer without actually solving the problem. Remember equal number of variables and independent equations ensures a solution. If a number N is decreased by p percent and then the resulting value is increased by q percent, the final result is equal to N. If both p and q are positive integers, what is the value of p ? (1) p is not a multiple of 10. (2) q is not a multiple of 10. If we modify the question by multiplying both sides by 100 and dividing by n, we get (100p)(100+q)=10,000 There are 2 variables (p,q) and one equation (100p)(100+q)=10,000. There are 2 more equations given from the 2 conditions, so there is high chance (D) will be our answer. From condition 1, p=98, q=4,900/ p=84, q=525. This is insufficient, as there is no unique answer. For condition 2, p=20, q=25/ p=84, q=525. This is also insufficient for the same reason. Looking at the condition together, however, we get p=84, q=525, which is a unique answer. The answer is therefore (C). For cases where we need 1 more equation, such as original conditions with “1 variable”, or “2 variables and 1 equation”, or “3 variables and 2 equations”, we have 1 equation each in both 1) and 2). Therefore, there is 59 % chance that D is the answer, while A or B has 38% chance and C or E has 3% chance. Since D is most likely to be the answer using 1) and 2) separately according to DS definition. Obviously there may be cases where the answer is A, B, C or E.
_________________
MathRevolution: Finish GMAT Quant Section with 10 minutes to spare The oneandonly World’s First Variable Approach for DS and IVY Approach for PS with ease, speed and accuracy. "Only $99 for 3 month Online Course" "Free Resources30 day online access & Diagnostic Test" "Unlimited Access to over 120 free video lessons  try it yourself"



Manager
Joined: 08 Oct 2015
Posts: 241

Re: If a number N is decreased by p percent and then the resulting value
[#permalink]
Show Tags
17 Nov 2015, 09:56
MathRevolution wrote: Forget conventional ways of solving math questions. In DS, Variable approach is the easiest and quickest way to find the answer without actually solving the problem. Remember equal number of variables and independent equations ensures a solution.
If a number N is decreased by p percent and then the resulting value is increased by q percent, the final result is equal to N. If both p and q are positive integers, what is the value of p ?
(1) p is not a multiple of 10.
(2) q is not a multiple of 10.
If we modify the question by multiplying both sides by 100 and dividing by n, we get (100p)(100+q)=10,000 There are 2 variables (p,q) and one equation (100p)(100+q)=10,000. There are 2 more equations given from the 2 conditions, so there is high chance (D) will be our answer. From condition 1, p=98, q=4,900/ p=84, q=525. This is insufficient, as there is no unique answer. For condition 2, p=20, q=25/ p=84, q=525. This is also insufficient for the same reason. Looking at the condition together, however, we get p=84, q=525, which is a unique answer. The answer is therefore (C).
For cases where we need 1 more equation, such as original conditions with “1 variable”, or “2 variables and 1 equation”, or “3 variables and 2 equations”, we have 1 equation each in both 1) and 2). Therefore, there is 59 % chance that D is the answer, while A or B has 38% chance and C or E has 3% chance. Since D is most likely to be the answer using 1) and 2) separately according to DS definition. Obviously there may be cases where the answer is A, B, C or E. how would one think of such possible answers during the test? what level hardness question is this?



Manager
Joined: 08 Oct 2015
Posts: 241

Re: If a number N is decreased by p percent and then the resulting value
[#permalink]
Show Tags
17 Nov 2015, 10:00
GMATinsight wrote: Mo2men wrote: Hi GMATinsight,
When combined 1 & 2, I found difficult to get the answer and in the real test it will be waste of time. Do you have any short cut to know there is only one unique answer such that the answer will be C?
Thanks i.e. (100p)*(100+q) = 100*100 = \(2^4∗5^4\) Combining the two statements Since and p and q are both NONMULTIPLE of 10 so (100p) and (100+q) also will be NONMULTIPLE of 10 i.e. the values of (100p) and (100+q) will include either powers of only 2 (i.e. 2 or 2^2 or 2^3 or 2^4) or powers of only 5 (i.e. 5 or 5^2 or 5^3 or 5^4) Also, Note that p can NOT be greater than 100 because (100p) must be POSITIVE Only possible values of p are q = 525 and p = 84 (100p)*(100+q) = 16*625 = 100*100 SUFFICIENT I Hope this helps!!! on simplifying using another method, i arrive at 100(qp) = pq any help from here?



Intern
Joined: 01 Mar 2016
Posts: 6

Re: If a number N is decreased by p percent and then the resulting value
[#permalink]
Show Tags
17 May 2016, 13:13
GMATinsight wrote: santorasantu wrote: Now, N*[1(p/100)]*[1+(q/100)] = N
i.e. (100p)*(100+q) = 100*100 = \(2^4*5^4\)
I cannot find an algebraic way to arrive at this equation. How is this determined? I can get to { [1(p/100)]*[1+(q/100)] = 1 }. However, when multiplying both sides by 100, I get { (100p)*(100+q) = 100 }..



Senior Manager
Joined: 23 Feb 2015
Posts: 452

Re: If a number N is decreased by p percent and then the resulting value
[#permalink]
Show Tags
06 Dec 2016, 12:47
MathRevolution wrote: Forget conventional ways of solving math questions. In DS, Variable approach is the easiest and quickest way to find the answer without actually solving the problem. Remember equal number of variables and independent equations ensures a solution.
If a number N is decreased by p percent and then the resulting value is increased by q percent, the final result is equal to N. If both p and q are positive integers, what is the value of p ?
(1) p is not a multiple of 10.
(2) q is not a multiple of 10.
If we modify the question by multiplying both sides by 100 and dividing by n, we get (100p)(100+q)=10,000 There are 2 variables (p,q) and one equation (100p)(100+q)=10,000. There are 2 more equations given from the 2 conditions, so there is high chance (D) will be our answer. From condition 1, p=98, q=4,900/ p=84, q=525. This is insufficient, as there is no unique answer. For condition 2, p=20, q=25/ p=84, q=525. This is also insufficient for the same reason. Looking at the condition together, however, we get p=84, q=525, which is a unique answer. The answer is therefore (C).
The original question stem says: N*(100p / 100)*(100+q / 100) = N can we really divide the equation by N? There is no indication in the question that ''N is not zero''. So, why do we divide the equation by N? Thanks...
_________________
“The heights by great men reached and kept were not attained in sudden flight but, they while their companions slept, they were toiling upwards in the night.” ― Henry Wadsworth Longfellow Social Network: https://www.facebook.com/IamAbuAsad



Math Revolution GMAT Instructor
Joined: 16 Aug 2015
Posts: 6529
GPA: 3.82

Re: If a number N is decreased by p percent and then the resulting value
[#permalink]
Show Tags
13 Dec 2016, 03:51
iMyself wrote: MathRevolution wrote: Forget conventional ways of solving math questions. In DS, Variable approach is the easiest and quickest way to find the answer without actually solving the problem. Remember equal number of variables and independent equations ensures a solution.
If a number N is decreased by p percent and then the resulting value is increased by q percent, the final result is equal to N. If both p and q are positive integers, what is the value of p ?
(1) p is not a multiple of 10.
(2) q is not a multiple of 10.
If we modify the question by multiplying both sides by 100 and dividing by n, we get (100p)(100+q)=10,000 There are 2 variables (p,q) and one equation (100p)(100+q)=10,000. There are 2 more equations given from the 2 conditions, so there is high chance (D) will be our answer. From condition 1, p=98, q=4,900/ p=84, q=525. This is insufficient, as there is no unique answer. For condition 2, p=20, q=25/ p=84, q=525. This is also insufficient for the same reason. Looking at the condition together, however, we get p=84, q=525, which is a unique answer. The answer is therefore (C).
The original question stem says: N*(100p / 100)*(100+q / 100) = N can we really divide the equation by N? There is no indication in the question that ''N is not zero''. So, why do we divide the equation by N? Thanks... Hi iMyself, Because there is a condition that n is not 0. Happy Studying! Math Revolution
_________________
MathRevolution: Finish GMAT Quant Section with 10 minutes to spare The oneandonly World’s First Variable Approach for DS and IVY Approach for PS with ease, speed and accuracy. "Only $99 for 3 month Online Course" "Free Resources30 day online access & Diagnostic Test" "Unlimited Access to over 120 free video lessons  try it yourself"



Senior Manager
Joined: 23 Feb 2015
Posts: 452

Re: If a number N is decreased by p percent and then the resulting value
[#permalink]
Show Tags
19 Dec 2016, 12:06
MathRevolution wrote: iMyself wrote: MathRevolution wrote: Forget conventional ways of solving math questions. In DS, Variable approach is the easiest and quickest way to find the answer without actually solving the problem. Remember equal number of variables and independent equations ensures a solution.
If a number N is decreased by p percent and then the resulting value is increased by q percent, the final result is equal to N. If both p and q are positive integers, what is the value of p ?
(1) p is not a multiple of 10.
(2) q is not a multiple of 10.
If we modify the question by multiplying both sides by 100 and dividing by n, we get (100p)(100+q)=10,000 There are 2 variables (p,q) and one equation (100p)(100+q)=10,000. There are 2 more equations given from the 2 conditions, so there is high chance (D) will be our answer. From condition 1, p=98, q=4,900/ p=84, q=525. This is insufficient, as there is no unique answer. For condition 2, p=20, q=25/ p=84, q=525. This is also insufficient for the same reason. Looking at the condition together, however, we get p=84, q=525, which is a unique answer. The answer is therefore (C).
The original question stem says: N*(100p / 100)*(100+q / 100) = N can we really divide the equation by N? There is no indication in the question that ''N is not zero''. So, why do we divide the equation by N? Thanks... Hi iMyself, Because there is a condition that n is not 0. Happy Studying! Math RevolutionThe question stem did not directly say that N is not 0, but it indirectly indicates that N is not zero by stating the line ''a number N is decreased by p percent.......''. If a number is decreased by a certain percent, then it indicates that N must be greater than zero, right MathRevolution? Thank you for your kind response.
_________________
“The heights by great men reached and kept were not attained in sudden flight but, they while their companions slept, they were toiling upwards in the night.” ― Henry Wadsworth Longfellow Social Network: https://www.facebook.com/IamAbuAsad



Intern
Joined: 17 Oct 2014
Posts: 5

Re: If a number N is decreased by p percent and then the resulting value
[#permalink]
Show Tags
28 Dec 2016, 11:48
how did you come up two values for p&q that is 84 and 525 please explain



Intern
Joined: 17 Aug 2016
Posts: 48

If a number N is decreased by p percent and then the resulting value
[#permalink]
Show Tags
01 Jan 2017, 07:41
Even if pretty loose the way I solved it is the following:
Once we arrive to (100p)*(100+q) = 100*100 = 2^4∗5^4 we know the factorisation of (100p)*(100+q) Stm 1 tells us p is not a multiple of 10, therefore 100p is not a multiple of 10 either. Thus 100p contains only 2s or 5s in its factorisation, but we don't know in which quantity. i.e. 100p can be 2^3 (p is 92) or 5^2 (p is 75). The rest of the factorisation of (100p)*(100+q) will be covered by 100+q as long as this factorisation yields a number >100 > No suff.
Stm 2 same as above but with different constraints. This time 100+q contains only 2s or only 5s. The limit here is that 100p cannot be >100. > No suff.
Stm 1 and 2 clearly here we know that either (100p) contains only 2s or it contains only 5s (vice versa for (100+q)) Since (100p) cannot be >100 (100p) is 2^4 (p=84) and (100+q) is 5^4 (q=525) > C is the answer



Math Revolution GMAT Instructor
Joined: 16 Aug 2015
Posts: 6529
GPA: 3.82

Re: If a number N is decreased by p percent and then the resulting value
[#permalink]
Show Tags
11 Jan 2017, 00:13
Hi iMyself, Condition 1) N * ( 1  p/100 ) ( 1 + q / 100 ) = N ( 1  p / 100 ) ( 1 + q / 100 ) = 1 ( 100  p ) ( 100 + q ) = 10,000 = 2^4 * 5^4 We have two cases satisfying the first condition. case 1: 100  p = 2^4, 100 + q = 5^4 100  p = 16, 100 + q = 625 p = 84, q = 525 case 2: 100  p = 5^2, 100 + q = 2^4 * 5^2 100  p = 25, 100 + q = 400 p = 75, q = 300 Not Sufficient Condition 2) case 1: 100  p = 2^4, 100 + q = 5^4 p = 84, q = 525 case 2: 100  p = 2^4 * 5, 100 + q = 5^3 100  p = 80, 100 + q = 125 p = 20, q = 25 Not Sufficient Considering both conditions together, the only case for them is 100  p = 2^4 and 100 + q = 5^4., since prime factors 2 and 5 cannot be together in 100  p or 100 + q and p must be less than or equal to 100. Then 100  p = 16 and 100 + q = 625 p = 84 and q = 525 is the unique solution The correct answer is C. Happy Studying! Math Revolution
_________________
MathRevolution: Finish GMAT Quant Section with 10 minutes to spare The oneandonly World’s First Variable Approach for DS and IVY Approach for PS with ease, speed and accuracy. "Only $99 for 3 month Online Course" "Free Resources30 day online access & Diagnostic Test" "Unlimited Access to over 120 free video lessons  try it yourself"



Intern
Joined: 10 May 2018
Posts: 5
Location: Argentina

Re: If a number N is decreased by p percent and then the resulting value
[#permalink]
Show Tags
14 Sep 2018, 07:34
mattyahn wrote: GMATinsight wrote: santorasantu wrote: Now, N*[1(p/100)]*[1+(q/100)] = N
i.e. (100p)*(100+q) = 100*100 = \(2^4*5^4\)
I cannot find an algebraic way to arrive at this equation. How is this determined? I can get to { [1(p/100)]*[1+(q/100)] = 1 }. However, when multiplying both sides by 100, I get { (100p)*(100+q) = 100 }.. I believe this should not be multiplied by 100 in both sides because multiplication is not distributive. I believe you would get (100p)*(1+q/100)=100. and hence you would need another 100 to multiply. I was having the same issue...hope this helps.




Re: If a number N is decreased by p percent and then the resulting value &nbs
[#permalink]
14 Sep 2018, 07:34






