GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 22 Apr 2019, 23:15

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

There are 8 teams in a certain league and each team plays each of the

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

 
VP
VP
User avatar
D
Joined: 09 Mar 2016
Posts: 1282
Re: There are 8 teams in a certain league and each team plays each of the  [#permalink]

Show Tags

New post 25 Dec 2017, 14:22
Bunuel wrote:
sarb wrote:
There are 8 teams in a certain league and each team plays each of the other teams exactly once. If each game is played by 2 teams, what is the total number of games played?

A. 15
B. 16
C. 28
D. 56
E. 64


The total # of games played would be equal to the # of different pairs possible from 8 teams, which is \(C^2_{8}=28\).

Answer: C.

P.S. Please read and follow: http://gmatclub.com/forum/rules-for-pos ... 33935.html Pay attention ot the points #3 and #8.


Bunuel lets say teams are as follows: A, B, C, D, E, F, G, H. So by using the simple combinatorics formula how do we exclude repeated teams ? I mean if A played with B - this is one game, and it could be also B WITH A ? yeah sounds a bit silly :) but how do we exclude such repetition :? thanks! :)
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 54440
Re: There are 8 teams in a certain league and each team plays each of the  [#permalink]

Show Tags

New post 25 Dec 2017, 21:07
dave13 wrote:
Bunuel wrote:
sarb wrote:
There are 8 teams in a certain league and each team plays each of the other teams exactly once. If each game is played by 2 teams, what is the total number of games played?

A. 15
B. 16
C. 28
D. 56
E. 64


The total # of games played would be equal to the # of different pairs possible from 8 teams, which is \(C^2_{8}=28\).

Answer: C.

P.S. Please read and follow: http://gmatclub.com/forum/rules-for-pos ... 33935.html Pay attention ot the points #3 and #8.


Bunuel lets say teams are as follows: A, B, C, D, E, F, G, H. So by using the simple combinatorics formula how do we exclude repeated teams ? I mean if A played with B - this is one game, and it could be also B WITH A ? yeah sounds a bit silly :) but how do we exclude such repetition :? thanks! :)


8C2 gives the number of different unordered pairs possible from 8:
(A, B)
(A, C)
...
(B, H)
...
(G, H)

So, (A, B) is there only once (there is no (B, A) there)

Similar questions to practice:
http://gmatclub.com/forum/how-many-diag ... 01540.html
http://gmatclub.com/forum/if-10-persons ... 10622.html
http://gmatclub.com/forum/10-business-e ... 26163.html
http://gmatclub.com/forum/how-many-diff ... 29992.html
http://gmatclub.com/forum/15-chess-play ... 55939.html
http://gmatclub.com/forum/there-are-5-c ... 27235.html
http://gmatclub.com/forum/if-each-parti ... 42222.html
http://gmatclub.com/forum/there-are-8-t ... 34582.html
http://gmatclub.com/forum/there-are-8-t ... 32366.html
http://gmatclub.com/forum/in-a-kickball ... 61846.html
http://gmatclub.com/forum/there-are-8-t ... 34582.html
_________________
VP
VP
User avatar
D
Joined: 09 Mar 2016
Posts: 1282
Re: There are 8 teams in a certain league and each team plays each of the  [#permalink]

Show Tags

New post 18 Mar 2018, 08:12
Bunuel wrote:
sarb wrote:
There are 8 teams in a certain league and each team plays each of the other teams exactly once. If each game is played by 2 teams, what is the total number of games played?

A. 15
B. 16
C. 28
D. 56
E. 64


The total # of games played would be equal to the # of different pairs possible from 8 teams, which is \(C^2_{8}=28\).

Answer: C.

P.S. Please read and follow: http://gmatclub.com/forum/rules-for-pos ... 33935.html Pay attention ot the points #3 and #8.



Bunuel you know I got confused by your shortcut solution :) until figured out all possible combinations in details . you know what surprises how this expression \(C^2_{8}=28\)
excludes the possibility of playing more than one game by two distinct teams, also it exludes repeated games like AB and BA....

let 8 teams be A, B, C, D, E, F, G, H

NUMBER OF GAMES PLAYES BY TWO TEAMS AS FOLLOWS:

AB BC CD DE EF
AC BD CE DF EG
AD BE CF DG EH
AE BF CG DH
AF BG CH
AG BH
AH

niks18 your comments are always appreciated :) have a great day :)
Retired Moderator
avatar
D
Joined: 25 Feb 2013
Posts: 1215
Location: India
GPA: 3.82
GMAT ToolKit User Reviews Badge
Re: There are 8 teams in a certain league and each team plays each of the  [#permalink]

Show Tags

New post 19 Mar 2018, 11:00
1
dave13 wrote:
Bunuel wrote:
sarb wrote:
There are 8 teams in a certain league and each team plays each of the other teams exactly once. If each game is played by 2 teams, what is the total number of games played?

A. 15
B. 16
C. 28
D. 56
E. 64


The total # of games played would be equal to the # of different pairs possible from 8 teams, which is \(C^2_{8}=28\).

Answer: C.

P.S. Please read and follow: http://gmatclub.com/forum/rules-for-pos ... 33935.html Pay attention ot the points #3 and #8.



Bunuel you know I got confused by your shortcut solution :) until figured out all possible combinations in details . you know what surprises how this expression \(C^2_{8}=28\)
excludes the possibility of playing more than one game by two distinct teams, also it exludes repeated games like AB and BA....

let 8 teams be A, B, C, D, E, F, G, H

NUMBER OF GAMES PLAYES BY TWO TEAMS AS FOLLOWS:

AB BC CD DE EF
AC BD CE DF EG
AD BE CF DG EH
AE BF CG DH
AF BG CH
AG BH
AH

niks18 your comments are always appreciated :) have a great day :)


Hi dave13

it is clearly mentioned in the question that each team plays against other team only Once. Hence you can safely use the formula provided by Bunuel. and if we say A plays against B then its same as saying B plays against A so order does not matter here. Hence there will be only one combination with A & B taken together and not two different combinations as stated by you AB & BA.
Intern
Intern
avatar
B
Joined: 01 Mar 2019
Posts: 20
Location: United States
Re: There are 8 teams in a certain league and each team plays each of the  [#permalink]

Show Tags

New post 23 Mar 2019, 10:36
Since the order of the teams doesn't matter, this is a combination problem. Specifically, how many ways can 2 teams be picked from a pool of 8 (8 choose 2).

\(\frac{n!}{(n-k)!(k)!}\)

Where: n = number of items in pool; k = number of items to pick

\(\frac{8!}{(8-2)!2!} \rightarrow \frac{8!}{6!2!} \rightarrow \frac{56}{2} \rightarrow 28\)

Answer C
Manager
Manager
avatar
B
Status: Turning my handicaps into assets
Joined: 09 Apr 2017
Posts: 129
CAT Tests
Re: There are 8 teams in a certain league and each team plays each of the  [#permalink]

Show Tags

New post 26 Mar 2019, 09:31
Experts please comment on my way of solution. I think combinatorics formulas are often restrictive and confusing. I solved this problem by the following way:

So, there are 8 teams and each team plays with each team, meaning that each team plays 7 games (except with itself, of course). So, there are 8*7= 56 games (counting as if only one team plays a game) will be played in total. If a game is played by 2 teams, so there should be 56/2=28 games as a result.

Is this a viable mehtod?
_________________
If time was on my side, I'd still have none to waste......
EMPOWERgmat Instructor
User avatar
V
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 13961
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Re: There are 8 teams in a certain league and each team plays each of the  [#permalink]

Show Tags

New post 26 Mar 2019, 13:11
Hi Mehemmed,

YES - your way is a valid way to approach this question. As you continue to study, you'll find that most questions in the Quant and Verbal sections can be approached in more than one way. Thus, maximizing your performance on Test Day involves more than just answering questions correctly - you have to ALSO be efficient with your approach. By extension, honing multiple skills (so that you can choose which approach is easiest on any given question) is an idea that you might want to implement in your broader study plan.

GMAT assassins aren't born, they're made,
Rich
_________________
760+: Learn What GMAT Assassins Do to Score at the Highest Levels
Contact Rich at: Rich.C@empowergmat.com

*****Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!*****

Rich Cohen

Co-Founder & GMAT Assassin

Special Offer: Save $75 + GMAT Club Tests Free
  Official GMAT Exam Packs + 70 Pt. Improvement Guarantee
www.empowergmat.com/
Target Test Prep Representative
User avatar
P
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 5807
Location: United States (CA)
Re: There are 8 teams in a certain league and each team plays each of the  [#permalink]

Show Tags

New post 27 Mar 2019, 19:06
Yes and no. If you think because a game is played by 2 teams, thus it means dividing by 2, then no. Since 2 here really means 2!. The actual reason for dividing 56 by 2 is that when we find 8*7 = 56, each game is counted twice. For example, if a game is played by 3 teams, then it should be divided by 3!, not the number 3.
_________________

Scott Woodbury-Stewart

Founder and CEO

Scott@TargetTestPrep.com
TTP - Target Test Prep Logo
122 Reviews

5-star rated online GMAT quant
self study course

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

Intern
Intern
avatar
B
Joined: 03 Oct 2018
Posts: 4
GMAT ToolKit User
Re: There are 8 teams in a certain league and each team plays each of the  [#permalink]

Show Tags

New post 28 Mar 2019, 00:18
sarb wrote:
There are 8 teams in a certain league and each team plays each of the other teams exactly once. If each game is played by 2 teams, what is the total number of games played?

A. 15
B. 16
C. 28
D. 56
E. 64



If each team played each other twice: 8(no of teams) *7(no of teams -1)
If each team played each other once: 8*7/2 = 28
OA:C
Intern
Intern
avatar
B
Joined: 09 Nov 2018
Posts: 2
Re: There are 8 teams in a certain league and each team plays each of the  [#permalink]

Show Tags

New post 28 Mar 2019, 00:19
sarb wrote:
There are 8 teams in a certain league and each team plays each of the other teams exactly once. If each game is played by 2 teams, what is the total number of games played?

A. 15
B. 16
C. 28
D. 56
E. 64



If each team played each other twice: 8(no of teams) *7(no of teams -1)
If each team played each other once: 8*7/2 = 28
OA:C
GMAT Club Bot
Re: There are 8 teams in a certain league and each team plays each of the   [#permalink] 28 Mar 2019, 00:19

Go to page   Previous    1   2   [ 30 posts ] 

Display posts from previous: Sort by

There are 8 teams in a certain league and each team plays each of the

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.