Asad
AbdurRakib
A manufacturer makes and sells 2 products, P and Q. The revenue from the sale of each unit of P is $20.00 and the revenue from the sale of each unit of Q is $17.00. Last year the manufacturer sold twice as many units of Q as P. What was the manufacturer’s average (arithmetic mean) revenue per unit sold of these 2 products last year?
A. $28.50
B. $27.00
C. $19.00
D. $18.50
E. $18.00
Hello Experts,
EMPOWERgmatRichC,
VeritasKarishma,
IanStewart,
Bunuel,
chetan2u,
ArvindCrackVerbal,
GMATGuruNY,
AaronPond,
GMATinsight,
ccooley^^ this is the actual question.
What if the question is modified a bit? Could you help me by removing other choices with the EASIEST way in the new version that i modified?
A manufacturer makes and sells 2 products, P and Q. The revenue from the sale of each unit of P is $20.00 and the revenue from the sale of each unit of Q is $17.00. Last year the manufacturer sold
twice as many units of P as Q. What was the manufacturer’s average (arithmetic mean) revenue per unit sold of these 2 products last year?
A. $28.50
B. $27.00
C. $19.00
D. $18.50
E. $18.00
Thanks__
It doesn't matter what the question is. Think this way:
P - Selling price is $20
Q - Selling price is $17
If equal quantities of the two are sold, the average selling price would be right in the middle, i.e. 18.5.
Now, if you sell P more, avg selling price will move toward 20.
But if you sell Q more, avg selling price will move toward 17.
So if Q are more than P in number, avg will lie between 17 and 18.5 (exclusive if both are sold)
If P are more in number than Q, avg will lie between 18.5 and 20 (exclusive if both are sold)