GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 21 Oct 2019, 06:57

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Is xy>3?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
GMATH Teacher
User avatar
P
Status: GMATH founder
Joined: 12 Oct 2010
Posts: 935
Is xy>3?  [#permalink]

Show Tags

New post 05 Mar 2019, 12:53
3
3
00:00
A
B
C
D
E

Difficulty:

  35% (medium)

Question Stats:

71% (01:49) correct 29% (01:54) wrong based on 117 sessions

HideShow timer Statistics

GMATH practice exercise (Quant Class 14)

Is \(xy >3\) ?

(1) \(7^x > 729\)
(2) \(9^y = 7\)

P.S.: this IS in GMAT´s quant section scope.

_________________
Fabio Skilnik :: GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here: https://gmath.net
Most Helpful Expert Reply
GMATH Teacher
User avatar
P
Status: GMATH founder
Joined: 12 Oct 2010
Posts: 935
Re: Is xy>3?  [#permalink]

Show Tags

New post 05 Mar 2019, 14:22
6
fskilnik wrote:
GMATH practice exercise (Quant Class 14)

Is \(xy >3\) ?

(1) \(7^x > 729\)
(2) \(9^y = 7\)

\(xy\,\,\mathop > \limits^? \,\,3\)

\(\left( 1 \right)\,\,{7^x} > 729\,\,\,\left\{ \matrix{
\,{\rm{Take}}\,\,\left( {x,y} \right) = \left( {4,0} \right)\,\,\,\,\,\left[ {{7^4} = {{49}^2}} \right]\,\,\,\,\, \Rightarrow \,\,\,\left\langle {{\rm{NO}}} \right\rangle \,\, \hfill \cr
\,{\rm{Take}}\,\,\left( {x,y} \right) = \left( {4,1} \right)\,\,\,\, \Rightarrow \,\,\,\left\langle {{\rm{YES}}} \right\rangle \,\, \hfill \cr} \right.\)

\(\left( 2 \right)\,\,{9^y} = 7\,\,\,\, \Rightarrow \,\,\,y = {y_p}\,\,\,{\rm{unique}}\,\,{\rm{,}}\,\,\,{1 \over 2}\,\,{\rm{ < }}\,\,{y_p} < 1\,\,\,\,\left\{ \matrix{
\,{\rm{Take}}\,\,\left( {x,y} \right) = \left( {0,{y_p}} \right)\,\,\,\, \Rightarrow \,\,\,\left\langle {{\rm{NO}}} \right\rangle \,\, \hfill \cr
\,{\rm{Take}}\,\,\left( {x,y} \right) = \left( {6,{y_p}} \right)\,\,\,\, \Rightarrow \,\,\,\left\langle {{\rm{YES}}} \right\rangle \,\, \hfill \cr} \right.\)

\(\left( {1 + 2} \right)\,\,\,{3^6} = 729\,\,\,\mathop < \limits^{\left( 1 \right)} \,\,\,{7^x}\,\,\mathop = \limits^{\left( 2 \right)} \,\,\,{\left( {{9^y}} \right)^x} = {3^{2xy}}\,\,\,\,\,\mathop \Rightarrow \limits^{3\,\, > \,\,1} \,\,\,2xy > 6\,\,\,\,\, \Rightarrow \,\,\,\,\left\langle {{\rm{YES}}} \right\rangle\)


The correct answer is (C).


We follow the notations and rationale taught in the GMATH method.

Regards,
Fabio.
_________________
Fabio Skilnik :: GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here: https://gmath.net
General Discussion
Manager
Manager
avatar
G
Joined: 16 Oct 2011
Posts: 107
GMAT 1: 570 Q39 V41
GMAT 2: 640 Q38 V31
GMAT 3: 650 Q42 V38
GMAT 4: 650 Q44 V36
GMAT 5: 570 Q31 V38
GPA: 3.75
Reviews Badge CAT Tests
Is xy>3?  [#permalink]

Show Tags

New post Updated on: 05 Mar 2019, 14:12
4
fskilnik wrote:
GMATH practice exercise (Quant Class 14)

Is \(xy >3\) ?

(1) \(7^x > 729\)
(2) \(9^y = 7\)

P.S.: this IS in GMAT´s quant section scope.


If YOU FIND MY SOLUTION HELPFUL, PLEASE GIVE ME KUDOS

This question is testing, among other things, our ability to estimate

(1) Notice, that powers of 7 give us 7, 49, 353, 2479 Now 729? 353, therefore 3<x<4, (although we should estimate that x is closer to 3 than 4). Lets say x = a little more than 3. Y can still = ANYTHING NS

(2) 9^Y = 7. Notice that 9^0 =1 and 9^1 =9,therefore y is a little less than 1, however X can = ANYTHING NS
(1) and (2) x is between 3 and 4, and y is a little less than 1. Assuming the numbers picked for estimation are accurate enough (y is very close to 3.4), we will get an unequivocal YES as 3.4(.9) = 3.06> 3

The problem I have with this question, is it requires us to estimate exponential relationships to a level of precision that is unrealistic on this test. For example, what if the test taker estimated x to be 3.1, and y to be .9. That would give us xy> approx 2.6, which could give the reader a potential YES and NO.

Overall this is a high quality question as far as the skills the question tests, however.

Originally posted by ocelot22 on 05 Mar 2019, 13:23.
Last edited by ocelot22 on 05 Mar 2019, 14:12, edited 3 times in total.
GMATH Teacher
User avatar
P
Status: GMATH founder
Joined: 12 Oct 2010
Posts: 935
Re: Is xy>3?  [#permalink]

Show Tags

New post 05 Mar 2019, 13:42
1
1
ocelot22 wrote:
(1) and (2) x>3 and 0<y<1. Then 0<XY<3, which gives us a definite NO

Hi ocelot22 !

Thanks for joining!

The two inequalities you mentioned (repeated above) are enough for your conclusion (in red)?

Another thing: I guarantee (1+2) is enough for a definite YES!!

My solution is short but very instructive. Think a bit more before I present it!

Regards,
Fabio.
_________________
Fabio Skilnik :: GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here: https://gmath.net
Manager
Manager
avatar
G
Joined: 16 Oct 2011
Posts: 107
GMAT 1: 570 Q39 V41
GMAT 2: 640 Q38 V31
GMAT 3: 650 Q42 V38
GMAT 4: 650 Q44 V36
GMAT 5: 570 Q31 V38
GPA: 3.75
Reviews Badge CAT Tests
Re: Is xy>3?  [#permalink]

Show Tags

New post 05 Mar 2019, 13:59
fskilnik wrote:
ocelot22 wrote:
(1) and (2) x>3 and 0<y<1. Then 0<XY<3, which gives us a definite NO

Hi ocelot22 !

Thanks for joining!

The two inequalities you mentioned (repeated above) are enough for your conclusion (in red)?

Another thing: I guarantee (1+2) is enough for a definite YES!!

My solution is short but very instructive. Think a bit more before I present it!

Regards,
Fabio.


You are right. I use potentially inappropriate interval techniques for this problem, and have corrected my mistakes from before. Can you please however, look over my edited post, which points out some concerns I have pointed out about this problem
GMATH Teacher
User avatar
P
Status: GMATH founder
Joined: 12 Oct 2010
Posts: 935
Re: Is xy>3?  [#permalink]

Show Tags

New post 05 Mar 2019, 14:13
ocelot22 wrote:
You are right. I use potentially inappropriate interval techniques for this problem, and have corrected my mistakes from before. Can you please however, look over my edited post, which points out some concerns I have pointed out about this problem

I am glad your interest in my problem continues, ocelot22 .

ocelot22 wrote:
The problem I have with this question, is it requires us to estimate exponential relationships to a level of precision that is unrealistic on this test. For example, what if the test taker estimated x to be 3.1, and y to be .9. That would give us xy= approx 2.6, which would be A NO answer to the question.

This would be true only if you had no choice but to insist on your approach... higher-level problems are harder (also) because a proper way of dealing with them are not always seen at first!

Regards,
Fabio.
_________________
Fabio Skilnik :: GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here: https://gmath.net
GMATH Teacher
User avatar
P
Status: GMATH founder
Joined: 12 Oct 2010
Posts: 935
Re: Is xy>3?  [#permalink]

Show Tags

New post 05 Mar 2019, 14:17
1
ocelot22 wrote:
If YOU FIND MY SOLUTION HELPFUL, PLEASE GIVE ME KUDOS

This question is testing, among other things, our ability to estimate

(1) Notice, that powers of 7 give us 7, 49, 353, 2479 Now 729? 353, therefore 3<x<4, (although we should estimate that x is closer to 3 than 4). Lets say x = a little more than 3. Y can still = ANYTHING NS

(2) 9^Y = 7. Notice that 9^0 =1 and 9^1 =9,therefore y is a little less than 1, however X can = ANYTHING NS
(1) and (2) x is between 3 and 4, and y is a little less than 1. Assuming the numbers picked for estimation are accurate enough (y is very close to 3.4), we will get an unequivocal YES as 3.4(.9) = 3.06> 3

The problem I have with this question, is it requires us to estimate exponential relationships to a level of precision that is unrealistic on this test. For example, what if the test taker estimated x to be 3.1, and y to be .9. That would give us xy> approx 2.6, which could give the reader a potential YES and NO.

Overall this is a high quality question as far as the skills the question tests, however.

Thanks for the comment in blue. I guess you will find the question much more interesting after analysing my solution. I will post it below right now!
_________________
Fabio Skilnik :: GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here: https://gmath.net
Manager
Manager
avatar
G
Joined: 16 Oct 2011
Posts: 107
GMAT 1: 570 Q39 V41
GMAT 2: 640 Q38 V31
GMAT 3: 650 Q42 V38
GMAT 4: 650 Q44 V36
GMAT 5: 570 Q31 V38
GPA: 3.75
Reviews Badge CAT Tests
Is xy>3?  [#permalink]

Show Tags

New post 05 Mar 2019, 15:12
1
fskilnik wrote:
fskilnik wrote:
GMATH practice exercise (Quant Class 14)

Is \(xy >3\) ?

(1) \(7^x > 729\)
(2) \(9^y = 7\)

\(xy\,\,\mathop > \limits^? \,\,3\)

\(\left( 1 \right)\,\,{7^x} > 729\,\,\,\left\{ \matrix{
\,{\rm{Take}}\,\,\left( {x,y} \right) = \left( {4,0} \right)\,\,\,\,\,\left[ {{7^4} = {{49}^2}} \right]\,\,\,\,\, \Rightarrow \,\,\,\left\langle {{\rm{NO}}} \right\rangle \,\, \hfill \cr
\,{\rm{Take}}\,\,\left( {x,y} \right) = \left( {4,1} \right)\,\,\,\, \Rightarrow \,\,\,\left\langle {{\rm{YES}}} \right\rangle \,\, \hfill \cr} \right.\)

\(\left( 2 \right)\,\,{9^y} = 7\,\,\,\, \Rightarrow \,\,\,y = {y_p}\,\,\,{\rm{unique}}\,\,{\rm{,}}\,\,\,{1 \over 2}\,\,{\rm{ < }}\,\,{y_p} < 1\,\,\,\,\left\{ \matrix{
\,{\rm{Take}}\,\,\left( {x,y} \right) = \left( {0,{y_p}} \right)\,\,\,\, \Rightarrow \,\,\,\left\langle {{\rm{NO}}} \right\rangle \,\, \hfill \cr
\,{\rm{Take}}\,\,\left( {x,y} \right) = \left( {6,{y_p}} \right)\,\,\,\, \Rightarrow \,\,\,\left\langle {{\rm{YES}}} \right\rangle \,\, \hfill \cr} \right.\)

\(\left( {1 + 2} \right)\,\,\,{3^6} = 729\,\,\,\mathop < \limits^{\left( 1 \right)} \,\,\,{7^x}\,\,\mathop = \limits^{\left( 2 \right)} \,\,\,{\left( {{9^y}} \right)^x} = {3^{2xy}}\,\,\,\,\,\mathop \Rightarrow \limits^{3\,\, > \,\,1} \,\,\,2xy > 6\,\,\,\,\, \Rightarrow \,\,\,\,\left\langle {{\rm{YES}}} \right\rangle\)


The correct answer is (C).


We follow the notations and rationale taught in the GMATH method.

Regards,
Fabio.


This is a very succinct solution. I Appreciate the compact notation used. This of course avoids the estimation pitfall that I ran into in my solution. I am guessing that you teach this kind of notation in your course?
GMAT Club Legend
GMAT Club Legend
User avatar
V
Joined: 12 Sep 2015
Posts: 4015
Location: Canada
Re: Is xy>3?  [#permalink]

Show Tags

New post 05 Mar 2019, 15:27
3
Top Contributor
fskilnik wrote:
Is \(xy >3\) ?

(1) \(7^x > 729\)
(2) \(9^y = 7\)


Target question: Is xy > 3 ?

Statement 1: (7^x) > 729
Since there's no information about y, we cannot answer the target question with certainty.
Statement 1 is NOT SUFFICIENT

Statement 2: (9^y) = 7
Since there's no information about x, we cannot answer the target question with certainty.
Statement 2 is NOT SUFFICIENT

Statements 1 and 2 combined
Statement 1 tells us that (7^x) > 729
Statement 2 tells us that (9^y) = 7

Take the inequality (7^x) > 729, and replace 7 with 9^y to get: (9^y)^x > 729
Simplify to get: 9^xy > 729
Rewrite 729 as 9^3 to get: 9^xy > 9^3
From this, we can conclude that xy > 3
Since we can answer the target question with certainty, the combined statements are SUFFICIENT

Answer: C

Cheers,
Brent
_________________
Test confidently with gmatprepnow.com
Image
GMATH Teacher
User avatar
P
Status: GMATH founder
Joined: 12 Oct 2010
Posts: 935
Re: Is xy>3?  [#permalink]

Show Tags

New post 05 Mar 2019, 15:57
1
ocelot22 wrote:
This is a very succinct solution. I Appreciate the compact notation used. This of course avoids the estimation pitfall that I ran into in my solution. I am guessing that you teach this kind of notation in your course?
Hi, ocelot22 !

First of all, thanks for the kudos (both in the question stem and also in my solution)!

I am glad you liked our notation/solution.

YES, the precision and brevity of our exclusive notation is an IMPORTANT part of our method, especially in Data Sufficiency! I will not come into details here, due to respect for all companies, teachers, and students who have their own (probably different) opinions on the matter (or never thought about it).

In our "test drive" you will earn two credits for questions. Feel free to use one of them to ask me about this at your free trial! (*)

Regards,
Fabio.

(*) P.S.: although the number of question credits is limited per student (to avoid someone asking me, say, 10 questions a day "to avoid" thinking by himself/herself beforehand), I usually reimburse each credit used. (I am the sole creator of the method and the only person who answers questions in our preparation.)
_________________
Fabio Skilnik :: GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here: https://gmath.net
VP
VP
User avatar
V
Joined: 23 Feb 2015
Posts: 1262
GMAT ToolKit User Premium Member
Is xy>3?  [#permalink]

Show Tags

New post 29 Mar 2019, 11:58
1
fskilnik wrote:
fskilnik wrote:
GMATH practice exercise (Quant Class 14)

Is \(xy >3\) ?

(1) \(7^x > 729\)
(2) \(9^y = 7\)

\(xy\,\,\mathop > \limits^? \,\,3\)

\(\left( 1 \right)\,\,{7^x} > 729\,\,\,\left\{ \matrix{
\,{\rm{Take}}\,\,\left( {x,y} \right) = \left( {4,0} \right)\,\,\,\,\,\left[ {{7^4} = {{49}^2}} \right]\,\,\,\,\, \Rightarrow \,\,\,\left\langle {{\rm{NO}}} \right\rangle \,\, \hfill \cr
\,{\rm{Take}}\,\,\left( {x,y} \right) = \left( {4,1} \right)\,\,\,\, \Rightarrow \,\,\,\left\langle {{\rm{YES}}} \right\rangle \,\, \hfill \cr} \right.\)

\(\left( 2 \right)\,\,{9^y} = 7\,\,\,\, \Rightarrow \,\,\,y = {y_p}\,\,\,{\rm{unique}}\,\,{\rm{,}}\,\,\,{1 \over 2}\,\,{\rm{ < }}\,\,{y_p} < 1\,\,\,\,\left\{ \matrix{
\,{\rm{Take}}\,\,\left( {x,y} \right) = \left( {0,{y_p}} \right)\,\,\,\, \Rightarrow \,\,\,\left\langle {{\rm{NO}}} \right\rangle \,\, \hfill \cr
\,{\rm{Take}}\,\,\left( {x,y} \right) = \left( {6,{y_p}} \right)\,\,\,\, \Rightarrow \,\,\,\left\langle {{\rm{YES}}} \right\rangle \,\, \hfill \cr} \right.\)

\(\left( {1 + 2} \right)\,\,\,{3^6} = 729\,\,\,\mathop < \limits^{\left( 1 \right)} \,\,\,{7^x}\,\,\mathop = \limits^{\left( 2 \right)} \,\,\,{\left( {{9^y}} \right)^x} = {3^{2xy}}\,\,\,\,\,\mathop \Rightarrow \limits^{3\,\, > \,\,1} \,\,\,2xy > 6\,\,\,\,\, \Rightarrow \,\,\,\,\left\langle {{\rm{YES}}} \right\rangle\)


The correct answer is (C).


We follow the notations and rationale taught in the GMATH method.

Regards,
Fabio.

fskilnik,
Sir, do you want to mean 2>1 (talking about statement) in the red part?
Regards,
Asad
Attachments

solution.PNG
solution.PNG [ 57.29 KiB | Viewed 716 times ]


_________________
“The heights by great men reached and kept were not attained in sudden flight but, they while their companions slept, they were toiling upwards in the night.”
Henry Wadsworth Longfellow

Do you need official questions for Quant?
3700 Unique Official GMAT Quant Questions
------
SEARCH FOR ALL TAGS
GMAT Club Tests
GMATH Teacher
User avatar
P
Status: GMATH founder
Joined: 12 Oct 2010
Posts: 935
Re: Is xy>3?  [#permalink]

Show Tags

New post 29 Mar 2019, 16:09
1
@AsadAbu wrote:
fskilnik,
Sir, do you want to mean 2>1 (talking about statement) in the red part?
Regards,
Asad
Hi, Asad (@AsadAbu)!

Sorry for the delay (very busy)!

Thank you for your REAL interest in my solution. :)

Answering your (important) question: I said \({3^6} < {3^{2xy}}\,\,\,\mathop \Rightarrow \limits^{3\, > \,1} \,\,\,6 < 2xy\)

Meaning: from the fact that the exponential function \(y = 3^x\) has a base that is greater than 1 (=3), it is an (strictly) increasing function:

\(x < y\,\,\,\, \Rightarrow \,\,\,{3^x} < {3^y}\)

From this fact, please note that: \(6 \ge 2xy\,\,\,\mathop \Rightarrow \limits^{3\, > \,1} \,\,\,{3^6} \ge {3^{2xy}}\,\,\,\left( {{\rm{impossible,}}\,\,{\rm{because}}\,\,{3^6} < {3^{2xy}}} \right)\)

That´s (finally!) the reason for the validity of the implication \({3^6} < {3^{2xy}}\,\,\,\mathop \Rightarrow \limits^{3\, > \,1} \,\,\,6 < 2xy\) ...

Best Regards,
Fabio.
_________________
Fabio Skilnik :: GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here: https://gmath.net
VP
VP
User avatar
V
Joined: 23 Feb 2015
Posts: 1262
GMAT ToolKit User Premium Member
Re: Is xy>3?  [#permalink]

Show Tags

New post 02 Apr 2019, 11:17
Thank you so much...
_________________
“The heights by great men reached and kept were not attained in sudden flight but, they while their companions slept, they were toiling upwards in the night.”
Henry Wadsworth Longfellow

Do you need official questions for Quant?
3700 Unique Official GMAT Quant Questions
------
SEARCH FOR ALL TAGS
GMAT Club Tests
GMATH Teacher
User avatar
P
Status: GMATH founder
Joined: 12 Oct 2010
Posts: 935
Re: Is xy>3?  [#permalink]

Show Tags

New post 02 Apr 2019, 13:27
AsadAbu wrote:
Thank you so much...

Our pleasure, AsadAbu.

If you (and other readers) liked our approach and explanations, we invite you to try our test drive ("Free Trial"), so that you will have a MUCH better understanding of our METHOD, that is, our systematic (and very deep!) way of looking into the GMAT´s contents with all objectivity, subtleness and "venom" that characterizes high-level performances in the quant section of the test.

We create and post new questions there (such as this one) on an almost daily basis, by the way.

Regards and success in your studies,
Fabio.
_________________
Fabio Skilnik :: GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here: https://gmath.net
VP
VP
User avatar
V
Joined: 23 Feb 2015
Posts: 1262
GMAT ToolKit User Premium Member
Re: Is xy>3?  [#permalink]

Show Tags

New post 02 Apr 2019, 14:08
fskilnik wrote:
AsadAbu wrote:
Thank you so much...

Our pleasure, AsadAbu.

If you (and other readers) liked our approach and explanations, we invite you to try our test drive ("Free Trial"), so that you will have a MUCH better understanding of our METHOD, that is, our systematic (and very deep!) way of looking into the GMAT´s contents with all objectivity, subtleness and "venom" that characterizes high-level performances in the quant section of the test.

We create and post new questions there (such as this one) on an almost daily basis, by the way.

Regards and success in your studies,
Fabio.

I'm going to try ""Free Trial"" from tomorrow. Thanks__
_________________
“The heights by great men reached and kept were not attained in sudden flight but, they while their companions slept, they were toiling upwards in the night.”
Henry Wadsworth Longfellow

Do you need official questions for Quant?
3700 Unique Official GMAT Quant Questions
------
SEARCH FOR ALL TAGS
GMAT Club Tests
Intern
Intern
avatar
B
Joined: 10 Apr 2019
Posts: 18
Re: Is xy>3?  [#permalink]

Show Tags

New post 20 May 2019, 14:01
GMATPrepNow wrote:
fskilnik wrote:
Is \(xy >3\) ?

(1) \(7^x > 729\)
(2) \(9^y = 7\)


Target question: Is xy > 3 ?

Statement 1: (7^x) > 729
Since there's no information about y, we cannot answer the target question with certainty.
Statement 1 is NOT SUFFICIENT

Statement 2: (9^y) = 7
Since there's no information about x, we cannot answer the target question with certainty.
Statement 2 is NOT SUFFICIENT

Statements 1 and 2 combined
Statement 1 tells us that (7^x) > 729
Statement 2 tells us that (9^y) = 7

Take the inequality (7^x) > 729, and replace 7 with 9^y to get: (9^y)^x > 729
Simplify to get: 9^xy > 729
Rewrite 729 as 9^3 to get: 9^xy > 9^3
From this, we can conclude that xy > 3
Since we can answer the target question with certainty, the combined statements are SUFFICIENT

Answer: C

Cheers,
Brent


Hi Brent,

Could you please clarify if it is always possible to replace one part of the inequality completely, just like you are doing in your solution

Quote:
Take the inequality (7^x) > 729, and replace 7 with 9^y to get: (9^y)^x > 729
GMAT Club Bot
Re: Is xy>3?   [#permalink] 20 May 2019, 14:01
Display posts from previous: Sort by

Is xy>3?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne