fskilnik
GMATH practice exercise (Quant Class 14)
Is \(xy >3\) ?
(1) \(7^x > 729\)
(2) \(9^y = 7\)
\(xy\,\,\mathop > \limits^? \,\,3\)
\(\left( 1 \right)\,\,{7^x} > 729\,\,\,\left\{ \matrix{\\
\,{\rm{Take}}\,\,\left( {x,y} \right) = \left( {4,0} \right)\,\,\,\,\,\left[ {{7^4} = {{49}^2}} \right]\,\,\,\,\, \Rightarrow \,\,\,\left\langle {{\rm{NO}}} \right\rangle \,\, \hfill \cr \\
\,{\rm{Take}}\,\,\left( {x,y} \right) = \left( {4,1} \right)\,\,\,\, \Rightarrow \,\,\,\left\langle {{\rm{YES}}} \right\rangle \,\, \hfill \cr} \right.\)
\(\left( 2 \right)\,\,{9^y} = 7\,\,\,\, \Rightarrow \,\,\,y = {y_p}\,\,\,{\rm{unique}}\,\,{\rm{,}}\,\,\,{1 \over 2}\,\,{\rm{ < }}\,\,{y_p} < 1\,\,\,\,\left\{ \matrix{\\
\,{\rm{Take}}\,\,\left( {x,y} \right) = \left( {0,{y_p}} \right)\,\,\,\, \Rightarrow \,\,\,\left\langle {{\rm{NO}}} \right\rangle \,\, \hfill \cr \\
\,{\rm{Take}}\,\,\left( {x,y} \right) = \left( {6,{y_p}} \right)\,\,\,\, \Rightarrow \,\,\,\left\langle {{\rm{YES}}} \right\rangle \,\, \hfill \cr} \right.\)
\(\left( {1 + 2} \right)\,\,\,{3^6} = 729\,\,\,\mathop < \limits^{\left( 1 \right)} \,\,\,{7^x}\,\,\mathop = \limits^{\left( 2 \right)} \,\,\,{\left( {{9^y}} \right)^x} = {3^{2xy}}\,\,\,\,\,\mathop \Rightarrow \limits^{3\,\, > \,\,1} \,\,\,2xy > 6\,\,\,\,\, \Rightarrow \,\,\,\,\left\langle {{\rm{YES}}} \right\rangle\)
The correct answer is (C).
We follow the notations and rationale taught in the
GMATH method.
Regards,
Fabio.