GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 22 Oct 2018, 01:53

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

If x^2 = y^2, is true that x > 0 ? (1) x = 2y+1 (2) y <= -1

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Veritas Prep GMAT Instructor
User avatar
P
Joined: 16 Oct 2010
Posts: 8404
Location: Pune, India
Re: If x^2 = y^2, is true that x > 0 ? (1) x = 2y+1 (2) y <= -1  [#permalink]

Show Tags

New post 23 Jan 2017, 00:55
1
dimitri92 wrote:
Bunuel wrote:
If x^2 = y^2, is true that x>0?

\(x^2 = y^2\) --> \(|x|=|y|\) --> either \(y=x\) or \(y=-x\).

(1) x=2y+1 --> if \(y=x\) then we would have: \(x=2x+1\) --> \(x=-1<0\) (notice that in this case \(y=x=-1\)) but if \(y=-x\) then we would have: \(x=-2x+1\) --> \(x=\frac{1}{3}>0\) (notice that in this case \(y=-x=-\frac{1}{3}\)). Not sufficient.

(2) y<= -1. Clearly insufficient.

(1)+(2) Since from (2) \(y\leq{-1}\) then from (1) \(y=x=-1\), so the answer to the question is NO. Sufficient.

Answer: C.

Hope it's clear.


Hi Bunuel & Karishma, I will appreciate if you can comment:

1- How can we see this question and decide whether we need to pick numbers or not?

2- In other words, combining the two statements here is fairly easy, but how do we get it to a 50-50 between C and E in 5 to 10 seconds?

3 - In other words, how do we ensure that we don't waste time plugging in numbers in statement 1?



Basically there are two distinct strategies - Number plugging (for example a percentages question in which one set will certainly give the answer) and Number testing (such as this question in which you need to test for various values)

I swear by number plugging but number testing is almost never my strategy of choice. I might want to try one set to understand the question/logic better but I will rarely try to deduce my answer from number testing.
So when I see x^2 = y^2, I automatically think
|x| = |y| which implies x = y or x = -y
or x^2 - y^2 = (x + y) * (x - y) which implies x = -y or x = y

This makes me jump to stmnt 2 immediately since it is clearly insufficient. This brings me to (C) or (E).
_________________

Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >

GMAT self-study has never been more personalized or more fun. Try ORION Free!

Retired Moderator
User avatar
P
Joined: 19 Mar 2014
Posts: 948
Location: India
Concentration: Finance, Entrepreneurship
GPA: 3.5
GMAT ToolKit User Premium Member
Re: If x^2 = y^2, is true that x > 0 ? (1) x = 2y+1 (2) y <= -1  [#permalink]

Show Tags

New post 27 Jun 2017, 08:49
Bunuel wrote:
If x^2 = y^2, is true that x>0?

\(x^2 = y^2\) --> \(|x|=|y|\) --> either \(y=x\) or \(y=-x\).

(1) x=2y+1 --> if \(y=x\) then we would have: \(x=2x+1\) --> \(x=-1<0\) (notice that in this case \(y=x=-1\)) but if \(y=-x\) then we would have: \(x=-2x+1\) --> \(x=\frac{1}{3}>0\) (notice that in this case \(y=-x=-\frac{1}{3}\)). Not sufficient.

(2) y<= -1. Clearly insufficient.

(1)+(2) Since from (2) \(y\leq{-1}\) then from (1) \(y=x=-1\), so the answer to the question is NO. Sufficient.

Answer: C.

Hope it's clear.



Hello Bunuel,

Why did u take only two possibilities?

x2=y2x2=y2 --> |x|=|y||x|=|y| --> either y=xy=x or y=−xy=−x

we can have -x = - y and -x = y

I'm I missing something?

Posted from my mobile device
_________________

"Nothing in this world can take the place of persistence. Talent will not: nothing is more common than unsuccessful men with talent. Genius will not; unrewarded genius is almost a proverb. Education will not: the world is full of educated derelicts. Persistence and determination alone are omnipotent."

Best AWA Template: https://gmatclub.com/forum/how-to-get-6-0-awa-my-guide-64327.html#p470475

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 50039
Re: If x^2 = y^2, is true that x > 0 ? (1) x = 2y+1 (2) y <= -1  [#permalink]

Show Tags

New post 27 Jun 2017, 09:48
ydmuley wrote:
Bunuel wrote:
If x^2 = y^2, is true that x>0?

\(x^2 = y^2\) --> \(|x|=|y|\) --> either \(y=x\) or \(y=-x\).

(1) x=2y+1 --> if \(y=x\) then we would have: \(x=2x+1\) --> \(x=-1<0\) (notice that in this case \(y=x=-1\)) but if \(y=-x\) then we would have: \(x=-2x+1\) --> \(x=\frac{1}{3}>0\) (notice that in this case \(y=-x=-\frac{1}{3}\)). Not sufficient.

(2) y<= -1. Clearly insufficient.

(1)+(2) Since from (2) \(y\leq{-1}\) then from (1) \(y=x=-1\), so the answer to the question is NO. Sufficient.

Answer: C.

Hope it's clear.



Hello Bunuel,

Why did u take only two possibilities?

x2=y2x2=y2 --> |x|=|y||x|=|y| --> either y=xy=x or y=−xy=−x

we can have -x = - y and -x = y

I'm I missing something?

Posted from my mobile device


-x = -y is the same as x = y and -x = y is the same as x = -y.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Director
Director
User avatar
P
Joined: 13 Mar 2017
Posts: 622
Location: India
Concentration: General Management, Entrepreneurship
GPA: 3.8
WE: Engineering (Energy and Utilities)
Re: If x^2 = y^2, is true that x > 0 ? (1) x = 2y+1 (2) y <= -1  [#permalink]

Show Tags

New post 27 Jun 2017, 23:55
burnttwinky wrote:
If x^2 = y^2, is true that x>0?

(1) x=2y+1

(2) y<= -1


Given : x^2 = y^2 => x=+/-y
DS : x>0

Option 1 : x = 2y+1
x^2 = [(x-1)/2]^2
=> 4x^2 = x^2 +1 -2x
=> 3x^2 +2x -1 = 0
=> (x+1) (3x-1) = 0
=> x= -1, 1/3

NOT SUFFICIENT

Option 2 :
y <= -1
So there can be many values of x . x<=-1 or x>=1
NOT SUFFICIENT

Combined :
x= -1,1/3
so y = 1, -1, 1/3, -1/3
But y <=-1
So x = -1 is possible

SUFFICIENT

Answer C
_________________

CAT 2017 99th percentiler : VA 97.27 | DI-LR 96.84 | QA 98.04 | OA 98.95
UPSC Aspirants : Get my app UPSC Important News Reader from Play store.

MBA Social Network : WebMaggu


Appreciate by Clicking +1 Kudos ( Lets be more generous friends.)



What I believe is : "Nothing is Impossible, Even Impossible says I'm Possible" : "Stay Hungry, Stay Foolish".

Current Student
avatar
B
Joined: 22 Sep 2016
Posts: 181
Location: India
GMAT 1: 710 Q50 V35
GPA: 4
Re: If x^2 = y^2, is true that x > 0 ? (1) x = 2y+1 (2) y <= -1  [#permalink]

Show Tags

New post 01 Jul 2017, 05:03
Bunuel wrote:
If x^2 = y^2, is true that x>0?

\(x^2 = y^2\) --> \(|x|=|y|\) --> either \(y=x\) or \(y=-x\).

(1) x=2y+1 --> if \(y=x\) then we would have: \(x=2x+1\) --> \(x=-1<0\) (notice that in this case \(y=x=-1\)) but if \(y=-x\) then we would have: \(x=-2x+1\) --> \(x=\frac{1}{3}>0\) (notice that in this case \(y=-x=-\frac{1}{3}\)). Not sufficient.

(2) y<= -1. Clearly insufficient.

(1)+(2) Since from (2) \(y\leq{-1}\) then from (1) \(y=x=-1\), so the answer to the question is NO. Sufficient.

Answer: C.

Hope it's clear.


In the following statement,

(1)+(2) Since from (2) \(y\leq{-1}\) then from (1) \(y=x=-1\), so the answer to the question is NO. Sufficient.

what if, y=-x=-1 ?
Then x=1>0 and hence (1)+(2) = insufficient
_________________

Desperately need 'KUDOS' !!

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 50039
Re: If x^2 = y^2, is true that x > 0 ? (1) x = 2y+1 (2) y <= -1  [#permalink]

Show Tags

New post 01 Jul 2017, 05:25
rekhabishop wrote:
Bunuel wrote:
If x^2 = y^2, is true that x>0?

\(x^2 = y^2\) --> \(|x|=|y|\) --> either \(y=x\) or \(y=-x\).

(1) x=2y+1 --> if \(y=x\) then we would have: \(x=2x+1\) --> \(x=-1<0\) (notice that in this case \(y=x=-1\)) but if \(y=-x\) then we would have: \(x=-2x+1\) --> \(x=\frac{1}{3}>0\) (notice that in this case \(y=-x=-\frac{1}{3}\)). Not sufficient.

(2) y<= -1. Clearly insufficient.

(1)+(2) Since from (2) \(y\leq{-1}\) then from (1) \(y=x=-1\), so the answer to the question is NO. Sufficient.

Answer: C.

Hope it's clear.


In the following statement,

(1)+(2) Since from (2) \(y\leq{-1}\) then from (1) \(y=x=-1\), so the answer to the question is NO. Sufficient.

what if, y=-x=-1 ?
Then x=1>0 and hence (1)+(2) = insufficient


From (1) we have only two possibilities:
a. \(y=x=-1\)
b. \(y=-x=-\frac{1}{3}\)

y = -1 and x = 1 does not satisfy the first statement.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Intern
Intern
avatar
Joined: 27 Oct 2017
Posts: 4
Re: If x^2 = y^2, is true that x > 0 ? (1) x = 2y+1 (2) y <= -1  [#permalink]

Show Tags

New post 13 Nov 2017, 19:13
Don't we assume x<0 when we infer x=-y from x^2=y^2 (and when x>0 x=y)? Isn't this the normal procedure when we have |x|=something. I got x=-y and x=y from the statement, but then got confused by the assumptions made to open the abs value. Thanks.
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 50039
Re: If x^2 = y^2, is true that x > 0 ? (1) x = 2y+1 (2) y <= -1  [#permalink]

Show Tags

New post 13 Nov 2017, 21:03
1
alekkx wrote:
Don't we assume x<0 when we infer x=-y from x^2=y^2 (and when x>0 x=y)? Isn't this the normal procedure when we have |x|=something. I got x=-y and x=y from the statement, but then got confused by the assumptions made to open the abs value. Thanks.


You could use number plugging to check whether you are right.

x^2 = y^2:

The above could be true for example if x = y = -1 or if x = 1 and y = -1. These examples answer no to both of your question. Generally x^2 = y^2 means that |x| = |y|, so x and y are at the same distance from 0 on the number line.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Intern
Intern
avatar
Joined: 27 Oct 2017
Posts: 4
Re: If x^2 = y^2, is true that x > 0 ? (1) x = 2y+1 (2) y <= -1  [#permalink]

Show Tags

New post 19 Nov 2017, 10:54
Bunuel wrote:
alekkx wrote:
Don't we assume x<0 when we infer x=-y from x^2=y^2 (and when x>0 x=y)? Isn't this the normal procedure when we have |x|=something. I got x=-y and x=y from the statement, but then got confused by the assumptions made to open the abs value. Thanks.


You could use number plugging to check whether you are right.

x^2 = y^2:

The above could be true for example if x = y = -1 or if x = 1 and y = -1. These examples answer no to both of your question. Generally x^2 = y^2 means that |x| = |y|, so x and y are at the same distance from 0 on the number line.


Thanks. What are the implications of |y|<|x|, is it "y<x or y>-x" or something different?
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 50039
Re: If x^2 = y^2, is true that x > 0 ? (1) x = 2y+1 (2) y <= -1  [#permalink]

Show Tags

New post 19 Nov 2017, 11:01
1
alekkx wrote:
Bunuel wrote:
alekkx wrote:
Don't we assume x<0 when we infer x=-y from x^2=y^2 (and when x>0 x=y)? Isn't this the normal procedure when we have |x|=something. I got x=-y and x=y from the statement, but then got confused by the assumptions made to open the abs value. Thanks.


You could use number plugging to check whether you are right.

x^2 = y^2:

The above could be true for example if x = y = -1 or if x = 1 and y = -1. These examples answer no to both of your question. Generally x^2 = y^2 means that |x| = |y|, so x and y are at the same distance from 0 on the number line.


Thanks. What are the implications of |y|<|x|, is it "y<x or y>-x" or something different?


|x| is the distance from x to 0 on the number line, so |y| < |x| means that x if further from 0 than y is.

----x----y----0--------------
----x---------0----y---------
---------y----0---------x----
--------------0----y----x----
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Intern
Intern
avatar
Joined: 27 Oct 2017
Posts: 4
Re: If x^2 = y^2, is true that x > 0 ? (1) x = 2y+1 (2) y <= -1  [#permalink]

Show Tags

New post 19 Nov 2017, 11:31
Bunuel wrote:
|x| is the distance from x to 0 on the number line, so |y| < |x| means that x if further from 0 than y is.

----x----y----0--------------
----x---------0----y---------
---------y----0---------x----
--------------0----y----x----


Thanks Bunuel. It looks like I did not capture all cases with my inequalities. For example, when y>0, I have y is always less than x, which is not true based on case 2. When faced with this condition on DS, is the best way to draw out the number line like this? How does this compare to getting a condition that says |x-5|>2 in terms of how you would get the constraints.
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 50039
Re: If x^2 = y^2, is true that x > 0 ? (1) x = 2y+1 (2) y <= -1  [#permalink]

Show Tags

New post 19 Nov 2017, 11:35
alekkx wrote:
Bunuel wrote:
|x| is the distance from x to 0 on the number line, so |y| < |x| means that x if further from 0 than y is.

----x----y----0--------------
----x---------0----y---------
---------y----0---------x----
--------------0----y----x----


Thanks Bunuel. It looks like I did not capture all cases with my inequalities. For example, when y>0, I have y is always less than x, which is not true based on case 2. When faced with this condition on DS, is the best way to draw out the number line like this? How does this compare to getting a condition that says |x-5|>2 in terms of how you would get the constraints.


10. Absolute Value



For more check Ultimate GMAT Quantitative Megathread



Hope it helps.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Manager
Manager
User avatar
G
Joined: 10 Apr 2018
Posts: 152
Re: If x^2 = y^2, is true that x > 0 ? (1) x = 2y+1 (2) y <= -1  [#permalink]

Show Tags

New post 17 Sep 2018, 14:57
Kris01 wrote:
Hello Alexpavlos,

You are right in assuming that since y=-1 and x^2=y^2, x=+/-1. However, remember that equation in statement 1 also gives you a relationship between statement x and y. The correct answer should satisfy all the data. Now the question you should ask yourself is whether it is possible to use the information in statement 2 and 1 together to get a single value for x.

Statement 1 mentions that
x=2y+1
Substituting y=-1 in the this equation, we get

x=-1 and hence, x<0. Hence, together the two statements suffice.

Answer-C

Hope this helps! Let me know if you need any further clarification.

alexpavlos wrote:
Bunuel wrote:
If x^2 = y^2, is true that x>0?

\(x^2 = y^2\) --> \(|x|=|y|\) --> either \(y=x\) or \(y=-x\).

(1) x=2y+1 --> if \(y=x\) then we would have: \(x=2x+1\) --> \(x=-1<0\) (notice that in this case \(y=x=-1\)) but if \(y=-x\) then we would have: \(x=-2x+1\) --> \(x=\frac{1}{3}>0\) (notice that in this case \(y=-x=-\frac{1}{3}\)). Not sufficient.

(2) y<= -1. Clearly insufficient.

(1)+(2) Since from (2) \(y\leq{-1}\) then from (1) \(y=x=-1\), so the answer to the question is NO. Sufficient.

Answer: C.

Hope it's clear.


Hi!

I did a bit of a unnecessarily long way but got to the wrong answer and was hoping someone could tell me what my logical error is.

i squared both sides of statement 1 and got to \(x^2 = 4y^2 + 4y +1\)

then I replaced \(x^2\) with \(y^2\) and got the same as everyone else that y = -1 or y = -(1/3) NOT sufficient

Using statement B i eliminated y=-(1/3) but where I got it wrong is that I thought that since y = -1 then x could be equal to +/- 1 so I chose E

Am i missing something?

Thank you in advance or any responses!


Hi chetan2u, Bunuel,
I did understand the solution that you have shared , but what did i do wrong in my approach. I am getting answer E . I understand correct answer is C
here is how i tried to solve it
So we are given that x^2 =y^2
means we have |x|=|y|
So we have four cases from it ( understand that it finally transoms to two cases but just listed the cases as i did in my original attempt)
\(x\geq{0}\) , y\(\geq{0}\) we have x=y
\(x\geq{0}\) , y< 0 we have x=-y
x<0 , y\(\geq{0}\) we have -x=y
x<0 , y<0 we have x=y

Now statement A says :
x= 2y+1
squaring on both sides
\(x^2\)= (2y+1)^2
now since we are given that\(x^2\)=\(y^2\)replace \(x^2\) with\(y^2\)
we get
y=-1 or/and y=-\(\frac{1}{3}\)
now we can have
x=y=-1 or x=1 and y=-1
x=y=-\(\frac{1}{3}\) or x=\(\frac{1}{3}\) and y=-\(\frac{1}{3}\)

Statement 2:
\(y\leq{1}\)
we will have either x>0 or x<0
because
\(x\geq{0}\) , y< 0
or
x<0 , y<0


Now combing 1 and 2 we have
y=-1
so two cases are applicable ( i am referring to 4 cases that show relation between x and y)
x<0 , y<0 we have x=y
we will get x=y=-1
and for case this we get
\(x\geq{0}\) , y< 0 we have x=-y
x=1 and y=-1

I did not understand what Kris01 meant to consider true for all statements. I considered both statements and came to conclusion that y=-1

Where did i go wrong .
Please help me understand my mistake .
Probus
Math Expert
User avatar
V
Joined: 02 Aug 2009
Posts: 6975
Re: If x^2 = y^2, is true that x > 0 ? (1) x = 2y+1 (2) y <= -1  [#permalink]

Show Tags

New post 17 Sep 2018, 17:47
1
Probus wrote:

Hi chetan2u, Bunuel,
I did understand the solution that you have shared , but what did i do wrong in my approach. I am getting answer E . I understand correct answer is C
here is how i tried to solve it
So we are given that x^2 =y^2
means we have |x|=|y|
So we have four cases from it ( understand that it finally transoms to two cases but just listed the cases as i did in my original attempt)
\(x\geq{0}\) , y\(\geq{0}\) we have x=y
\(x\geq{0}\) , y< 0 we have x=-y
x<0 , y\(\geq{0}\) we have -x=y
x<0 , y<0 we have x=y

Now statement A says :
x= 2y+1
squaring on both sides
\(x^2\)= (2y+1)^2
now since we are given that\(x^2\)=\(y^2\)replace \(x^2\) with\(y^2\)
we get
y=-1 or/and y=-\(\frac{1}{3}\)
now we can have
x=y=-1 or x=1 and y=-1
x=y=-\(\frac{1}{3}\) or x=\(\frac{1}{3}\) and y=-\(\frac{1}{3}\)

Statement 2:
\(y\leq{1}\)
we will have either x>0 or x<0
because
\(x\geq{0}\) , y< 0
or
x<0 , y<0


Now combing 1 and 2 we have
y=-1
so two cases are applicable ( i am referring to 4 cases that show relation between x and y)
x<0 , y<0 we have x=y
we will get x=y=-1
and for case this we get
\(x\geq{0}\) , y< 0 we have x=-y
x=1 and y=-1

I did not understand what Kris01 meant to consider true for all statements. I considered both statements and came to conclusion that y=-1

Where did i go wrong .
Please help me understand my mistake .
Probus



Hi...

You have gone wrong in not considering equation 1 while taking value of X..
1) X=2y+1
You got two values of y as -1/3 and -1
Now substitute y as -1/3 , X=2*(-1/3)+1=-1/3
has -1, x=2*(-1)+1=-2+1=-1
So only two values are left -1/3 and -1 for X..
|x|=|y| may give as 1 as a value but statement I negates it
2) y<=-1
Nothing about X

Combined it tells you that y=-1 and so X=-1
Sufficient

C
_________________

1) Absolute modulus : http://gmatclub.com/forum/absolute-modulus-a-better-understanding-210849.html#p1622372
2)Combination of similar and dissimilar things : http://gmatclub.com/forum/topic215915.html
3) effects of arithmetic operations : https://gmatclub.com/forum/effects-of-arithmetic-operations-on-fractions-269413.html


GMAT online Tutor

GMAT Club Bot
Re: If x^2 = y^2, is true that x > 0 ? (1) x = 2y+1 (2) y <= -1 &nbs [#permalink] 17 Sep 2018, 17:47

Go to page   Previous    1   2   [ 34 posts ] 

Display posts from previous: Sort by

If x^2 = y^2, is true that x > 0 ? (1) x = 2y+1 (2) y <= -1

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.